
rOpenSci Packages: Development, Maintenance,
and Peer Review

rOpenSci software review editorial team (current and alumni): Brooke Anderson, Scott Chamberlain, Laura DeCicco, Julia Gustavsen, Jeff Hollister, Anna Krystalli, Mauro Lepore, Lincoln Mullen, Mark Padgham, Karthik Ram, Emily Riederer, Noam Ross, Maëlle Salmon, Adam Sparks, Melina Vidoni

Table of contents

rOpenSci Dev Guide 3

Preface 4

I Building Your Package 7

1 Packaging Guide 8
1.1 Package name andmetadata . 8

1.1.1 Naming your package . 8
1.1.2 Creating metadata for your package . 9

1.2 Platforms . 9
1.3 Package API . 9

1.3.1 Function and argument naming . 9
1.3.2 Console messages . 10
1.3.3 Interactive/Graphical Interfaces . 10
1.3.4 Input checking . 11
1.3.5 Packages wrapping web resources (API clients) 11

1.4 Code Style . 11
1.5 CITATION file . 12
1.6 README . 13
1.7 Documentation . 15

1.7.1 General . 15
1.7.2 roxygen2 use . 16
1.7.3 URLs in documentation . 17

1.8 Documentation website . 17
1.8.1 Automatic deployment of the documentation website 17
1.8.2 Grouping functions in the reference . 18
1.8.3 Branding of authors . 18
1.8.4 Tweaking the navbar . 18
1.8.5 Mathjax . 19
1.8.6 Package logo . 19

1.9 Authorship . 19
1.9.1 Authorship of included code . 19

1.10 Licence . 20

2

1.11 Testing . 20
1.12 Examples . 21
1.13 Package dependencies . 22
1.14 Recommended scaffolding . 24
1.15 Version Control . 24
1.16 Miscellaneous CRAN gotchas . 24

1.16.1 CRAN checks . 25
1.17 Bioconductor gotchas . 25
1.18 Further guidance . 25

1.18.1 Learning about package development . 25

2 Continuous Integration Best Practices 27
2.1 What is continuous integration (CI)? . 27
2.2 Why use continuous integration (CI)? . 27
2.3 Which continuous integration service(s)? . 28

2.3.1 Travis CI (Linux and Mac OSX) . 29
2.3.2 AppVeyor CI (Windows) . 29
2.3.3 Circle CI (Linux and Mac OSX) . 29

2.4 Test coverage . 30
2.5 Evenmore CI: OpenCPU . 30
2.6 Evenmore CI: rOpenSci docs . 30

3 Package Development Security Best Practices 31
3.1 Miscellaneous . 31
3.2 GitHub access security . 31
3.3 https . 31
3.4 Secrets in packages . 31

3.4.1 Secrets in packages and user protection . 32
3.4.2 Secrets in packages and development . 32
3.4.3 Secrets and CRAN . 33

3.5 Further reading . 33

II Software Peer Review of Packages 34

4 Software Peer Review, Why? What? 35
4.1 What is rOpenSci Software Peer Review? . 35
4.2 Why submit your package to rOpenSci? . 36
4.3 Why review packages for rOpenSci? . 36
4.4 Why are reviews open? . 36
4.5 Howwill users know a package has been reviewed? 37
4.6 Editors and reviewers . 37

4.6.1 Associate editors . 37

3

4.6.2 Reviewers . 38

5 Software Peer Review policies 40
5.1 Review process . 40

5.1.1 Publishing in other Venues . 41
5.1.2 Conflict of interest for reviewers/editors . 41

5.2 Aims and Scope . 41
5.2.1 Package categories . 42
5.2.2 Other scope considerations . 44
5.2.3 Package overlap . 44

5.3 Package ownership andmaintenance . 45
5.3.1 Role of the rOpenSci team . 45
5.3.2 Maintainer responsiveness . 45
5.3.3 Quality commitment . 46
5.3.4 Package removal . 46

5.4 Ethics, Data Privacy and Human Subjects Research 46
5.4.1 Resources . 48

5.5 Code of Conduct . 49

6 Guide for Authors 50
6.1 Planning a Submission (or a Pre‑Submission Enquiry) 50
6.2 Preparing for Submission . 51
6.3 The Submission Process . 51
6.4 The Review Process . 52

7 Guide for Reviewers 53
7.1 Volunteering as a reviewer . 53
7.2 Preparing your review . 54

7.2.1 General guidelines . 54
7.2.2 Off‑thread interactions . 55
7.2.3 Experience from past reviewers . 55
7.2.4 Helper package for reviewers . 56
7.2.5 Feedback on the process . 56

7.3 Submitting the Review . 56
7.4 Review follow‑up . 57

8 Guide for Editors 58
8.1 Editors’ responsibilities . 58
8.2 Handling Editor’s Checklist . 59

8.2.1 Upon submission: . 59
8.2.2 Look for and assign two reviewers: . 60
8.2.3 During review: . 62
8.2.4 After review: . 62

4

8.2.5 Package promotion: . 62
8.3 EiC Responsibilities . 63

8.3.1 Using devguider::devguide_eic_report() 64
8.3.2 Asking for more details . 64
8.3.3 Inviting a guest editor . 65

8.4 Responding to out‑of‑scope submissions . 65
8.5 Answering reviewers’ questions . 66
8.6 Managing a dev guide release . 66

8.6.1 Dev guide governance . 66
8.6.2 Blog post about a release . 66

9 Editorial management 68
9.1 Recruiting new editors . 68
9.2 Inviting a new editor . 68
9.3 Onboarding a new editor . 69
9.4 Offboarding an editor . 70

III Maintaining Packages 71

10 rOpenSci packagemaintenance cheatsheet 72
10.1 Help needed? . 72
10.2 GitHub repository access . 72
10.3 Other GitHub topics . 72
10.4 pkgdown documentation . 72
10.5 Access to rOpenSci slack workspace . 73
10.6 Package blog posts . 73
10.7 Package issues promotion . 73
10.8 Package use cases promotion . 73

11 Collaboration Guide 74
11.1 Make your repo contribution and collaboration friendly 74

11.1.1 Code of conduct . 74
11.1.2 Contributing guide . 74
11.1.3 Issue management . 75
11.1.4 Communication with users . 76

11.2 Working with collaborators . 76
11.2.1 Onboarding collaborators . 77
11.2.2 Working with collaborators (including yourself) 77
11.2.3 Be generous with attributions . 78
11.2.4 Welcoming collaborators to rOpenSci . 78

11.3 Further resources . 78

5

12 Changing packagemaintainers 79
12.1 Do you want to give upmaintenance of your package? 79
12.2 Do you want to take over maintenance of a package? 79
12.3 Taking over maintenance of a package . 79

12.3.1 FAQ for newmaintainers . 80
12.4 Tasks for rOpenSci staff . 81

13 Releasing a package 82
13.1 Versioning . 82
13.2 Releasing . 82
13.3 News file . 82

14 Marketing your package 84

15 GitHub Grooming 85
15.1 Make your repository more discoverable . 85

15.1.1 GitHub repo topics . 85
15.1.2 GitHub linguist . 85

15.2 Market your own account . 86

16 Package evolution ‑ changing stuff in your package 87
16.1 Philosophy of changes . 87
16.2 The lifecycle package . 87
16.3 Parameters: changing parameter names . 87
16.4 Functions: changing function names . 88
16.5 Functions: deprecate & defunct . 89

16.5.1 Testing deprecated functions . 91
16.6 Archiving packages . 92

17 Package Curation Policy 93
17.1 The package registry . 93
17.2 Staff‑maintained packages . 93
17.3 Peer‑reviewed packages . 94
17.4 Legacy acquired packages . 95
17.5 Incubator packages . 96

17.5.1 Incubator non‑R‑packages . 96
17.6 Books . 96

18 Contributing Guide 98

6

IV Appendix 99

19 NEWS 100
19.1 0.9.0 . 100
19.2 0.8.0 . 101
19.3 0.7.0 . 102
19.4 0.6.0 . 103
19.5 0.5.0 . 104
19.6 0.4.0 . 104
19.7 0.3.0 . 105
19.8 0.2.0 . 107
19.9 0.1.5 . 107
19.10First release 0.1.0 . 108
19.11place‑holder 0.0.1 . 108

20 Review template 109
20.1 Package Review . 109

20.1.1 Review Comments . 110

21 Editor’s template 111
21.0.1 Editor checks: . 111

22 Review request template 112

23 Reviewer approval comment template 113
23.1 Reviewer Response . 113

24 NEWS template 114

25 Book release guidance 116
25.1 Release book version . 116

25.1.1 Repomaintenance between releases . 116
25.1.2 1 month prior to release . 116
25.1.3 2 weeks prior to release . 117
25.1.4 Release . 117

26 How to set a redirect 118
26.1 Non GitHub pages site (e.g. Netlify) . 118
26.2 GitHub pages . 118

27 Bot commands 119
27.1 For everyone . 119

27.1.1 See the list of commands available to you 119
27.1.2 See the code of conduct . 119

7

27.2 For authors . 119
27.2.1 Check package with pkgcheck . 119
27.2.2 Submit response to reviewers . 119
27.2.3 Finalize repo transfer . 120
27.2.4 Get a new invite after approval . 120

27.3 For the editor‑in‑chief . 120
27.3.1 Assign an editor . 120
27.3.2 Put submission on hold . 120
27.3.3 Indicate the submission is out of scope . 121

27.4 For assigned editor . 121
27.4.1 Put submission on hold . 121
27.4.2 Check package with pkgcheck . 121
27.4.3 Check statistical standards . 121
27.4.4 Check that README has software review badge 121
27.4.5 Indicate you are now seeking reviewers . 122
27.4.6 Assign a reviewer . 122
27.4.7 Remove a reviewer . 122
27.4.8 Tweak review due date . 122
27.4.9 Record that a review was submitted . 122
27.4.10 Approve package . 122

8

rOpenSci Dev Guide

Thiswork is licensed under a Creative Commons Attribution‑NonCommercial‑ShareAlike 3.0 United
States License. Refer to its Zenodo DOI to cite it.

@software{ropensci_2024_10797633,
author = {rOpenSci and

Anderson, Brooke and
Chamberlain, Scott and
DeCicco, Laura and
Gustavsen, Julia and
Krystalli, Anna and
Lepore, Mauro and
Mullen, Lincoln and
Ram, Karthik and
Ross, Noam and
Salmon, Maëlle and
Vidoni, Melina and
Riederer, Emily and
Sparks, Adam and
Hollister, Jeff},

title = {{rOpenSci Packages: Development, Maintenance, and
Peer Review}},

month = mar,
year = 2024,
publisher = {Zenodo},
version = {0.9.0},
doi = {10.5281/zenodo.10797633},
url = {https://doi.org/10.5281/zenodo.10797633}

}

You can also read the PDF version of this book.

9

https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://doi.org/10.5281/zenodo.2553043

Preface

Welcome! This book is a guide for authors, maintainers, reviewers and editors of rOpenSci.

The first section of the book contains our guidelines for creating and testing R packages.

The second section is dedicated to rOpenSci’s software peer review process: what it is, our poli‑
cies, and specific guides for authors, editors and reviewers throughout the process. For statistical
software review, refer to the project webpage and resources.

The third and last section features our best practice for nurturing your package once it has been
onboarded: how to collaborate with other developers, how to document releases, how to promote
your package and how to leverage GitHub as a development platform. The third section also fea‑
tures a chapter for anyone wishing to start contributing to rOpenSci packages.

We hope that you’ll find the guide useful and clear, and welcome your suggestions in the issue
tracker of the book. Happy R packaging!

The rOpenSci editorial team.

This book is a living document. You can view updates to our best practices and policies via the
release notes.
You can cite this book using its Zenodometadata and DOI.

Sam Albers · Toph Allen · Kaique dos S. Alves · Brooke Anderson · Alison Appling · Denisse Fierro Ar‑
cos · Zebulun Arendsee · Taylor Arnold · Al‑Ahmadgaid B. Asaad · Dean Attali · Mara Averick · Suzan
Baert · James Balamuta · Vikram Baliga · David Bapst · Joëlle Barido‑Sottani · Allison Barner · Cale
Basaraba · John Baumgartner · Marcus Beck · Gabriel Becker · Jason Becker · Dom Bennett · Ken
Benoit · Aaron Berdanier · Fred Boehm · Carl Boettiger · Will Bolton · Ben Bond‑Lamberty · Anne‑
Sophie Bonnet‑Lebrun · Alison Boyer · Abby Bratt · François Briatte · Eric Brown · Julien Brun · Jenny
Bryan · Lukas Burk · Lorenzo Busetto · Maria Paula Caldas · Mario Gavidia Calderón · Brad Cannell ·
Joaquin Cavieres · Kevin Cazelles · Scott Chamberlain · Cathy Chamberlin · Jennifer Chang · Pierre
Chausse · Jorge Cimentada · Nicholas Clark · Chase Clark · Jon Clayden · Dena Jane Clink · Will Corn‑
well · Nic Crane · Enrico Crema · Verónica Cruz‑Alonso · Ildiko Czeller · Tad Dallas · Kauê de Sousa
· Christophe Dervieux · Amanda Dobbyn · Jasmine Dumas · Remko Duursma · Mark Edmondson ·
Paul Egeler · Evan Eskew · Harry Eslick · Salvador Fernandez · Alexander Fischer · Kim Fitter · Robert
M Flight · Sydney Foks · Stephen Formel · Zachary Stephen Longiaru Foster · Auriel Fournier · Kaija
Gahm · ZachGajewski · Carl Ganz · DuncanGarmonsway · Jan LaurensGeffert · SharlaGelfand ·Mon‑
ica Gerber · Duncan Gillespie · David Gohel · A. Cagri gokcek · Guadalupe Gonzalez · Rohit Goswami
· Laura Graham · Charles Gray · Matthias Grenié · Corinna Gries · Hugo Gruson · Ernest Guevarra · W

10

https://ropensci.org/stat-software-review/
https://github.com/ropensci/dev_guide/issues
https://github.com/ropensci/dev_guide/issues
https://doi.org/10.5281/zenodo.2553043
https://github.com/boshek
https://github.com/toph-allen
https://github.com/AlvesKS
https://github.com/geanders
https://github.com/aappling-usgs
https://github.com/lidefi87
https://github.com/lidefi87
https://github.com/arendsee
https://github.com/statsmaths
https://github.com/alstat
https://github.com/daattali
https://github.com/batpigandme
https://github.com/suzanbaert
https://github.com/suzanbaert
https://github.com/coatless
https://github.com/vbaliga
https://github.com/dwbapst
https://github.com/bjoelle
https://github.com/abarner
https://github.com/calebasaraba
https://github.com/calebasaraba
https://github.com/johnbaums
https://github.com/fawda123
https://github.com/gmbecker
https://github.com/jsonbecker
https://github.com/DomBennett
https://github.com/kbenoit
https://github.com/kbenoit
https://github.com/berdaniera
https://github.com/fboehm
https://github.com/cboettig
https://github.com/WillOnGit
https://github.com/bpbond
https://github.com/asbonnetlebrun
https://github.com/asbonnetlebrun
https://github.com/alisonboyer
https://github.com/aebratt
https://github.com/briatte
https://github.com/eebrown
https://github.com/brunj7
https://github.com/jennybc
https://github.com/jennybc
https://github.com/jemus42
https://github.com/lbusett
https://github.com/mpaulacaldas
https://github.com/quishqa
https://github.com/brad-cannell
https://github.com/jcavieresg
https://github.com/KevCaz
https://github.com/sckott
https://github.com/chamberlinc
https://github.com/j23414
https://github.com/pchausse
https://github.com/pchausse
https://github.com/cimentadaj
https://github.com/nicholasjclark
https://github.com/chasemc
https://github.com/jonclayden
https://github.com/DenaJGibbon
https://github.com/wcornwell
https://github.com/wcornwell
https://github.com/thisisnic
https://github.com/ercrema
https://github.com/VeruGHub
https://github.com/czeildi
https://github.com/taddallas
https://github.com/kauedesousa
https://github.com/cderv
https://github.com/aedobbyn
https://github.com/jasdumas
https://github.com/RemkoDuursma
https://github.com/MarkEdmondson1234
https://github.com/pegeler
https://github.com/eveskew
https://github.com/harryeslick
https://github.com/salvafern
https://github.com/s3alfisc
https://github.com/kimnewzealand
https://github.com/rmflight
https://github.com/rmflight
https://github.com/sfoks
https://github.com/sformel-usgs
https://github.com/zachary-foster
https://github.com/aurielfournier
https://github.com/kaijagahm
https://github.com/kaijagahm
https://github.com/gzach93
https://github.com/carlganz
https://github.com/nacnudus
https://github.com/JanLauGe
https://github.com/sharlagelfand
https://github.com/monicagerber
https://github.com/monicagerber
https://github.com/dosgillespie
https://github.com/davidgohel
https://github.com/cagrigokcek
https://github.com/guadag12
https://github.com/HaoZeke
https://github.com/laurajanegraham
https://github.com/softloud
https://github.com/Rekyt
https://github.com/cgries
https://github.com/bisaloo
https://github.com/ernestguevarra
https://github.com/kylehamilton
https://github.com/kylehamilton

Kyle Hamilton · Ivan Hanigan · Jeffrey Hanson · Rayna Harris · Ted Hart · Nujcharee Haswell · Verena
Haunschmid · Stephanie Hazlitt · Andrew Heiss · Max Held · Anna Hepworth · Bea Hernandez · Jim
Hester · Peter Hickey · Roel Hogervorst · Kelly Hondula · AllisonHorst · SeanHughes · JamesHunter ·
Brandon Hurr · Ger Inberg · Christopher Jackson · Najko Jahn · Tamora D James · Veronica Jimenez‑
Jacinto · Mike Johnson · Will Jones · Max Joseph · Megha Joshi · Krunoslav Juraic · Soumya Kalra ·
ZhianN. Kamvar ·Michael Kane · AndeeKaplan · Tinula Kariyawasam ·Hazel Kavılı · JonathanKeane
· Christopher T. Kenny · Os Keyes · Eunseop Kim · Aaron A. King · Michael Koontz · Bianca Kramer ·
Will Landau · Sam Lapp · Erin LeDell · Thomas Leeper · Sam Levin · Lisa Levinson · Stephanie Locke
· Marion Louveaux · Robin Lovelace · Julia Stewart Lowndes · Tim Lucas · Muralidhar, M.A. · Andrew
MacDonald · Jesse Maegan · Mike Mahoney · Tristan Mahr · Paula Andrea Martinez · Joao Martins ·
Ben Marwick · Claire Mason · Miles McBain · Lucy D’Agostino McGowan · Amelia McNamara · Elaine
McVey · Bryce Mecum · Nolwenn Le Meur · François Michonneau · Mario Miguel · Helen Miller · Beat‑
riz Milz · Jessica Minnier · Priscilla Minotti · Nichole Monhait · Kelsey Montgomery · Paula Moraga ·
Natalia Morandeira · Ross Mounce · Athanasia Monika Mowinckel · Lincoln Mullen · Matt Mulvahill
· Maria Victoria Munafó · David Neuzerling · Dillon Niederhut · Joel Nitta · Rory Nolan · Kari Nor‑
man · Jakub Nowosad · Matt Nunes · Daniel Nüst · Lauren O’Brien · Joseph O’Brien · Paul Oldham ·
Samantha Oliver · Dan Olner · Jeroen Ooms · Luis Osorio · Philipp Ottolinger · Mark Padgham · Ma‑
rina Papadopoulou · Edzer Pebesma · Thomas Lin Pedersen · Antonio J. Pérez‑Luque · Marcelo S.
Perlin · Rafael Pilliard‑Hellwig · Rodrigo Neto Pires · Lindsay Platt · Nicholas Potter · Joanne Potts ·
Josep Pueyo‑Ros · Etienne Racine · Manuel Ramon · Nistara Randhawa · David Ranzolin · Quentin
Read · Neal Richardson · tyler rinker · Emily Robinson · David Robinson · Alec Robitaille · Francisco
Rodriguez‑Sanchez · Sam Rogers · Julia Romanowska · Xavier Rotllan‑Puig · Bob Rudis · Edgar Ruiz
· Kent Russel · Michael Sachs · Sheila Saia · Alicia Schep · Klaus Schliep · Clemens Schmid · Patrick
Schratz · Collin Schwantes · Marco Sciaini · Heidi Seibold · Julia Silge · Margaret Siple · Peter Slaugh‑
ter · Mike Smith · Tuija Sonkkila · Øystein Sørensen · Jemma Stachelek · Christine Stawitz · Irene
Steves · Kelly Street · Matt Strimas‑Mackey · Alex Stringer · Michael Sumner · Chung‑Kai Sun · Sarah
Supp · Emi Tanaka · Jason Taylor · Filipe Teixeira · Andy Teucher · Jennifer Thompson · Joe Thorley ·
Nicholas Tierney · Tiffany Timbers · Tan Tran · Tim Trice · Utku Turk · Kyle Ueyama · Ted Underwood
· Adithi R. Upadhya · Kevin Ushey · Josef Uyeda · Frans van Dunné · Mauricio Vargas · Remi Vergnon ·
JakeWagner · BenWard · Elin Waring · Rachel Warnock · LeahWasser · David Watkins · Lukas Weber
· Marc Weber · Karissa Whiting · StefanWidgren · AnnaWilloughby · Saras Windecker · LukeWinslow
· DavidWinter · SebastianWójcik · WitoldWolski · KaraWoo · Marvin N.Wright · JacobWujciak‑Jens ·
BrunaWundervald · Lauren Yamane · Emily Zabor · Taras Zakharko · Hao Zhu · Chava Zibman · Nau‑
paka Zimmerman · Jake Zwart · santikka · Bri · Flury · Vincent · eholmes · Pachá · Rich · Claudia ·
Jasmine · Zack · Lluís · becarioprecario · gaurav

If you want to contribute to this book (suggestions, corrections) please refer to the GitHub repository
in particular the contributing guidelines. Thanks!

We are thankful for all authors, reviewers and guest editors for helping us improve the system and
this guide over the years. Thanks also to the following persons who made contributions to this guide
and its previous incarnations: Katrin Leinweber, JohnBaumgartner, FrançoisMichonneau, Christophe
Dervieux, Lorenzo Busetto, Ben Marwick, Nicholas Horton, Chris Kennedy, Mark Padgham, Jeroen
Ooms, Sean Hughes, Jan Gorecki, Joseph Stachelek, Dean Attali, Julia Gustavsen, Nicholas Tierney,

11

https://github.com/kylehamilton
https://github.com/ivanhanigan
https://github.com/jeffreyhanson
https://github.com/raynamharris
https://github.com/emhart
https://github.com/nujcharee
https://github.com/expectopatronum
https://github.com/expectopatronum
https://github.com/stephhazlitt
https://github.com/andrewheiss
https://github.com/maxheld83
https://github.com/arhepworth
https://github.com/chucheria
https://github.com/jimhester
https://github.com/jimhester
https://github.com/PeteHaitch
https://github.com/rmhogervorst
https://github.com/khondula
https://github.com/allisonhorst
https://github.com/seaaan
https://github.com/jameshunterbr
https://github.com/bhive01
https://github.com/ginberg
https://github.com/chjackson
https://github.com/njahn82
https://github.com/tdjames1
https://github.com/vjimenez9
https://github.com/vjimenez9
https://github.com/mikejohnson51
https://github.com/wjones127
https://github.com/mbjoseph
https://github.com/meghapsimatrix
https://github.com/kjuraic
https://github.com/sokal1456
https://github.com/zkamvar
https://github.com/kaneplusplus
https://github.com/andeek
https://github.com/Tinula-kariyawasam
https://github.com/UniversalTourist
https://github.com/jonkeane
https://github.com/christopherkenny
https://github.com/Ironholds
https://github.com/markean
https://github.com/kingaa
https://github.com/mikoontz
https://github.com/bmkramer
https://github.com/wlandau
https://github.com/sammlapp
https://github.com/ledell
https://github.com/leeper
https://github.com/levisc8
https://github.com/lisalevinson
https://github.com/stephlocke
https://github.com/marionlouveaux
https://github.com/robinlovelace
https://github.com/jules32
https://github.com/timcdlucas
https://github.com/Kattuvan
https://github.com/aammd
https://github.com/aammd
https://github.com/kierisi
https://github.com/mikemahoney218
https://github.com/tjmahr
https://github.com/orchid00
https://github.com/zambujo
https://github.com/benmarwick
https://github.com/clairemas0n
https://github.com/milesmcbain
https://github.com/LucyMcGowan
https://github.com/AmeliaMN
https://github.com/eamcvey
https://github.com/eamcvey
https://github.com/amoeba
https://github.com/nolwenn
https://github.com/fmichonneau
https://github.com/leocadio-miguel
https://github.com/helenmiller16
https://github.com/beatrizmilz
https://github.com/beatrizmilz
https://github.com/jminnier
https://github.com/pmnatural
https://github.com/nmonhait
https://github.com/kelshmo
https://github.com/Paula-Moraga
https://github.com/nmorandeira
https://github.com/rossmounce
https://github.com/drmowinckels
https://github.com/lmullen
https://github.com/mmulvahill
https://github.com/mvickm
https://github.com/mdneuzerling
https://github.com/deniederhut
https://github.com/joelnitta
https://github.com/rorynolan
https://github.com/karinorman
https://github.com/karinorman
https://github.com/Nowosad
https://github.com/nunesmatt
https://github.com/nuest
https://github.com/obrl-soil
https://github.com/jmobrien
https://github.com/poldham
https://github.com/limnoliver
https://github.com/DanOlner
https://github.com/jeroen
https://github.com/luismurao
https://github.com/ottlngr
https://github.com/mpadge
https://github.com/marinapapa
https://github.com/marinapapa
https://github.com/edzer
https://github.com/thomasp85
https://github.com/ajpelu
https://github.com/msperlin
https://github.com/msperlin
https://github.com/rtaph
https://github.com/bozaah
https://github.com/lindsayplatt
https://github.com/potterzot
https://github.com/TheAnalyticalEdge
https://github.com/jospueyo
https://github.com/etiennebr
https://github.com/manuramon
https://github.com/nistara
https://github.com/daranzolin
https://github.com/qdread
https://github.com/qdread
https://github.com/nealrichardson
https://github.com/trinker
https://github.com/robinsones
https://github.com/dgrtwo
https://github.com/robitalec
https://github.com/Pakillo
https://github.com/Pakillo
https://github.com/rogerssam
https://github.com/jromanowska
https://github.com/xavi-rp
https://github.com/hrbrmstr
https://github.com/edgararuiz
https://github.com/timelyportfolio
https://github.com/sachsmc
https://github.com/sheilasaia
https://github.com/AliciaSchep
https://github.com/KlausVigo
https://github.com/nevrome
https://github.com/pat-s
https://github.com/pat-s
https://github.com/collinschwantes
https://github.com/marcosci
https://github.com/HeidiSeibold
https://github.com/juliasilge
https://github.com/mcsiple
https://github.com/gothub
https://github.com/gothub
https://github.com/grimbough
https://github.com/tts
https://github.com/osorensen
https://github.com/jsta
https://github.com/ChristineStawitz-NOAA
https://github.com/isteves
https://github.com/isteves
https://github.com/kstreet13
https://github.com/mstrimas
https://github.com/awstringer1
https://github.com/mdsumner
https://github.com/cksun-usc
https://github.com/sarahsupp
https://github.com/sarahsupp
https://github.com/emitanaka
https://github.com/jmt2080ad
https://github.com/FilipeamTeixeira
https://github.com/ateucher
https://github.com/jenniferthompson
https://github.com/joethorley
https://github.com/njtierney
https://github.com/ttimbers
https://github.com/vinhtantran
https://github.com/timtrice
https://github.com/utkuturk
https://github.com/khueyama
https://github.com/tedunderwood
https://github.com/adithirgis
https://github.com/kevinushey
https://github.com/uyedaj
https://github.com/FvD
https://github.com/pachamaltese
https://github.com/remsamp
https://github.com/jacobpwagner
https://github.com/BenJWard
https://github.com/elinw
https://github.com/rachelwarnock
https://github.com/lwasser
https://github.com/wdwatkins
https://github.com/lmweber
https://github.com/mhweber
https://github.com/karissawhiting
https://github.com/stewid
https://github.com/arw36
https://github.com/smwindecker
https://github.com/lawinslow
https://github.com/dwinter
https://github.com/SebastianWojcik86
https://github.com/wolski
https://github.com/karawoo
https://github.com/mnwright
https://github.com/assignUser
https://github.com/brunaw
https://github.com/layamane
https://github.com/zabore
https://github.com/tzakharko
https://github.com/haozhu233
https://github.com/czibman
https://github.com/naupaka
https://github.com/naupaka
https://github.com/jzwart
https://github.com/santikka
https://github.com/BriannaLind
https://github.com/romanflury
https://github.com/vincentvanhees
https://github.com/eholmes
https://github.com/pachadotdev
https://github.com/richfitz
https://github.com/cvitolo
https://github.com/laijasmine
https://github.com/zackarno
https://github.com/llrs
https://github.com/becarioprecario
https://github.com/soodoku
https://github.com/ropensci/dev_guide
https://github.com/ropensci/dev_guide#contributing
https://github.com/katrinleinweber
https://github.com/johnbaums
https://github.com/fmichonneau
https://github.com/cderv
https://github.com/cderv
https://github.com/lbusett
https://github.com/benmarwick
https://github.com/nicholasjhorton
https://github.com/ck37
https://github.com/mpadge
https://github.com/jeroen
https://github.com/jeroen
https://github.com/seaaan
https://github.com/jangorecki
https://github.com/jsta
https://github.com/daattali
https://github.com/jooolia
https://github.com/njtierney

Rich FitzJohn, Tiffany Timbers, Hilmar Lapp, Miles McBain, Bryce Mecum, Jonathan Carroll, Carl Boet‑
tiger, Florian Privé, Stefanie Butland, Daniel Possenriede, Hadley Wickham, Mauro Lepore, Matthew
Fidler, Luke McGuinness, Aaron Wolen, Indrajeet Patil, Kevin Wright, Will Landau, Hugo Gruson„ Hao
Ye„ SébastienRochette„ EdwardWallace„ Alexander Fischer„MaximeJaunatre„ ThomasZwagerman.
Please tell us if we forgot to acknowledge your contribution!

12

https://github.com/richfitz
https://github.com/ttimbers
https://github.com/hlapp
https://github.com/milesmcbain
https://github.com/amoeba
https://github.com/jonocarroll/
https://github.com/cboettig/
https://github.com/cboettig/
https://github.com/privefl
https://github.com/stefaniebutland
https://github.com/dpprdan/
https://github.com/hadley/
https://github.com/maurolepore/
https://github.com/mattfidler
https://github.com/mattfidler
https://github.com/mcguinlu
https://github.com/aaronwolen
https://github.com/IndrajeetPatil
https://github.com/kwstat
https://github.com/wlandau
https://github.com/Bisaloo
https://github.com/ha0ye
https://github.com/ha0ye
https://github.com/statnmap
https://github.com/ewallace/
https://github.com/s3alfisc/
https://github.com/gowachin
https://github.com/thomaszwagerman

Part I

Building Your Package

13

1 Packaging Guide

rOpenSci accepts packages that meet our guidelines via a streamlined Software Peer Review
process. To ensure a consistent style across all of our tools we have written this chapter
highlighting our guidelines for package development. Please also read and apply our chapter
about continuous integration (CI). Further guidance for after the review process is provided in
the third section of this book starting with a chapter about collaboration.

We recommend that package developers read Hadley Wickham and Jenny Bryan’s thorough
book on package development which is available for free online. Our guide is partially redun‑
dant with other resources but highlights rOpenSci’s guidelines.

To read why submitting a package to rOpenSci is worth the effort to meet guidelines, have a
look at reasons to submit.

1.1 Package name andmetadata

1.1.1 Naming your package

• We strongly recommend short, descriptive names in lower case. If your package deals with
one or more commercial services, please make sure the name does not violate branding
guidelines. You can check if your package name is available, informative and not offensive
by using the pak::pkg_name_check() function; also use a search engine as you’d thus see
if it’s offensive in a language other than English. In particular, do not choose a package name
that’s already used on CRAN or Bioconductor.

• There is a trade‑off between the advantages of a unique package name and a less original
package name.

– Amore unique package namemight be easier to track (for you and us to assess package
use for instance, less false positives when typing its name in GitHub code search) and
search (for users to ask “how to use package blah” in a search engine).

– Ontheotherhanda toouniquepackagenamemightmake thepackage lessdiscoverable
(that is to say, to find it by searching “how todo this‑thing in R”). Itmight be an argument
for naming your package something very close to its topic such as geojson).

14

https://r-pkgs.org/
https://pak.r-lib.org/reference/pkg_name_check.html
https://github.com/ropensci/geojson

• Find other interesting aspects of naming your package in this blog post by Nick Tierney, and
in case you change yourmind, find out how to rename your package in this other blog post of
Nick’s.

1.1.2 Creatingmetadata for your package

We recommend you to use the codemetar package for creating and updating a JSON CodeMeta
metadata file for your package via codemetar::write_codemeta(). It will automatically include
all useful information, including GitHub topics. CodeMeta uses Schema.org terms so as it gains
popularity the JSONmetadata of your package might be used by third‑party services, maybe even
search engines.

1.2 Platforms

• Packages should run on all major platforms (Windows, macOS, Linux). Exceptions may be
granted packages that interact with system‑specific functions, or wrappers for utilities that
only operate on limited platforms, but authors should make every effort for cross‑platform
compatibility, including system‑specific compilation, or containerization of external utilities.

1.3 Package API

1.3.1 Function and argument naming

• Functions and arguments naming should be chosen towork together to form a common, log‑
ical programming API that is easy to read, and auto‑complete.

– Consider an object_verb() naming scheme for functions in your package that take a
common data type or interact with a common API. object refers to the data/API and
verb the primary action. This scheme helps avoid namespace conflicts with packages
that may have similar verbs, and makes code readable and easy to auto‑complete. For
instance, in stringi, functions starting with stri_ manipulate strings (stri_join(),
stri_sort(), and in googlesheets functions starting with gs_ are calls to the Google
Sheets API (gs_auth(), gs_user(), gs_download()).

• For functions that manipulate an object/data and return an object/data of the same type,
make the object/data the first argument of the function so as to enhance compatibility with
the pipe operators (base R’s |>, magrittr’s %>%).

• We strongly recommend snake_case over all other styles unless you are porting over a pack‑
age that is already in wide use.

15

https://www.njtierney.com/post/2018/06/20/naming-things/
https://www.njtierney.com/post/2017/10/27/change-pkg-name/
https://www.njtierney.com/post/2017/10/27/change-pkg-name/
https://github.com/ropensci/codemetar
https://codemeta.github.io/
https://schema.org/

• Avoid functionnameconflictswithbasepackagesorotherpopularones (e.g.ggplot2,dplyr,
magrittr, data.table)

• Argument naming and order should be consistent across functions that use similar inputs.

• Package functions importing data should not import data to the global environment, but in‑
stead must return objects. Assignments to the global environment are to be avoided in gen‑
eral.

1.3.2 Console messages

• Useeither the cli package, orbaseR’s tools (message()andwarning()) to communicatewith
the user in your functions.

• Highlights of the cli package include: automatic wrapping, respect of the NO_COLOR conven‑
tion, many semantic elements, and extensive documentation. Readmore in a blog post.

• Pleasedonotuseprint()orcat()unless it’s for aprint.*()orstr.*()methods, as these
methods of printing messages are harder for users to suppress.

• Provide away for users to opt out of verbosity, preferably at the package level: makemessage
creation dependent on an environment variable or option (like “usethis.quiet” in the usethis
package), rather than on a function parameter. The control of messages could be on several
levels (“none,”inform”, “debug”) rather than logical (no messages at all / all messages). Con‑
trol of verbosity is useful for end users but also in tests. More interesting comments can be
found in an issue of the tidyverse design guide.

1.3.3 Interactive/Graphical Interfaces

If providing graphical user interface (GUI) (such as a Shiny app), to facilitate workflow, include a
mechanism to automatically reproduce steps taken in the GUI. This could include auto‑generation
of code to reproduce the same outcomes, output of intermediate values produced in the interactive
tool, or simply clear and well‑documented mapping between GUI actions and scripted functions.
(See also “Testing” below.)

The tabulizer package e.g. has an interactive workflow to extract tables, but can also only extract
coordinates so one can re‑run things as a script. Besides, two examples of shiny apps that do code
generation are https://gdancik.shinyapps.io/shinyGEO/, and https://github.com/wallaceEcoMod/
wallace/.

16

https://cli.r-lib.org/
https://cli.r-lib.org/articles/cli-config-user.html?q=no#no_color
https://cli.r-lib.org/articles/cli-config-user.html?q=no#no_color
https://cli.r-lib.org/articles/semantic-cli.html
https://blog.r-hub.io/2023/11/30/cliff-notes-about-cli/
https://usethis.r-lib.org/reference/ui.html?q=usethis.quiet#silencing-output
https://github.com/tidyverse/design/issues/42
https://github.com/ropensci/tabulizer
https://gdancik.shinyapps.io/shinyGEO/
https://github.com/wallaceEcoMod/wallace/
https://github.com/wallaceEcoMod/wallace/

1.3.4 Input checking

We recommend your package use a consistent method of your choice for checking inputs – either
base R, an R package, or custom helpers.

1.3.5 Packages wrapping web resources (API clients)

If your package accesses a web API or another web resource,

• Make sure requests send an user agent, that is, a way to identify what (your package) or who
sent the request. The users should be able to override the package’s default user agent. Ide‑
ally theuseragent shouldbedifferentoncontinuous integrationservices, and indevelopment
(based on, for instance, the GitHub usernames of the developers).

• Youmight choose different (better) defaults than the API, in which case you should document
them.

• Your package should help with pagination, by allowing the users to not worry about it at all
since your package does all necessary requests.

• Your package should help with rate limiting according to the API rules.
• Your package should reproduce API errors, and possibly explain them in informative error
messages.

• Your package could export high‑level functions and low‑level functions, the latter allowing
users to call API endpoints directly with more control (like gh::gh()).

For more information refer to the blog post Why You Should (or Shouldn’t) Build an API Client.

1.4 Code Style

• For more information on how to style your code, name functions, and R scripts inside the R/
folder, we recommend reading the code chapter in The R Packages book. We recommend the
styler package for automating part of the code styling. We suggest reading the Tidyverse
style guide.

• You can choose to use = over <- as long you are consistent with one choice within your pack‑
age. We recommend avoiding the use of -> for assignment within a package. If you do use <-
throughout your package, and you also use R6 in that package, you’ll be forced to use = for as‑
signment within your R6Class construction ‑ this is not considered an inconsistency because
you can’t use <- in this case.

17

https://blog.r-hub.io/2022/03/10/input-checking/
https://httr2.r-lib.org/articles/wrapping-apis.html#user-agent
https://ropensci.org/blog/2022/06/16/publicize-api-client-yes-no
https://r-pkgs.org/Code.html
https://github.com/r-lib/styler
https://style.tidyverse.org/
https://style.tidyverse.org/

1.5 CITATION file

• If yourpackagedoesnotyethaveaCITATION file, youcancreateonewithusethis::use_citation(),
and populate it with values generated by the citation() function.

• CRAN requires CITATION files to be declared as bibentry items, and not in the previously‑
accepted form of citEntry().

• If you archive each release of your GitHub repo on Zenodo, add the Zenodo top‑level DOI to
the CITATION file.

• If one day after review at rOpenSci you publish a software publication about your package,
add it to the CITATION file.

• Less related to your package itself but to what supports it: if your package wraps a particular
resource such as data source or, say, statistical algorithm, remind users of how to cite that
resource via e.g. citHeader(). Maybe even add the reference for the resource.

As an example see the dynamite CITATION file which refers to the Rmanual as well as other associ‑
ated publications.

citHeader("To cite dynamite in publications use:")

bibentry(
key = "dynamitepaper",
bibtype = "Misc",
doi = "10.48550/ARXIV.2302.01607",
url = "https://arxiv.org/abs/2302.01607",
author = c(person("Santtu", "Tikka"), person("Jouni", "Helske")),
title = "dynamite: An R Package for Dynamic Multivariate Panel Models",
publisher = "arXiv",
year = "2023"

)

bibentry(
key = "dmpmpaper",
bibtype = "Misc",
title = "Estimating Causal Effects from Panel Data with Dynamic

Multivariate Panel Models",
author = c(person("Santtu", "Tikka"), person("Jouni", "Helske")),
publisher = "SocArxiv",
year = "2022",
url = "https://osf.io/preprints/socarxiv/mdwu5/"

)

18

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/bibentry.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/citEntry.html
https://help.zenodo.org/#versioning
https://discuss.ropensci.org/t/citation-of-original-article-when-implementing-specific-methods/2312
https://github.com/ropensci/dynamite/blob/main/inst/CITATION

bibentry(
key = "dynamite",
bibtype = "Manual",
title = "Bayesian Modeling and Causal Inference for Multivariate

Longitudinal Data",
author = c(person("Santtu", "Tikka"), person("Jouni", "Helske")),
note = "R package version 1.0.0",
year = "2022",
url = "https://github.com/ropensci/dynamite"

)

• You could also create and store a CITATION.cff thanks to the cffr package. It also provides
a GitHub Action workflow to keep the CITATION.cff file up‑to‑date.

1.6 README

• All packages should have a README file, named README.md, in the root of the repository. The
README should include, from top to bottom:

– The package name.
– Badges for continuous integration and test coverage, the badge for rOpenSci peer‑
review once it has started (see below), a repostatus.org badge, and any other badges
(e.g. R‑universe).

– Short description of goals of package (what does it do? why should a potential user
care?), with descriptive links to all vignettes unless the package is small and there’s only
one vignette repeating the README. Please also ensure the vignettes are rendered and
readable, see the “documentation website” section).

– Installation instructions using e.g. the remotes package, pak package, or R‑universe.
– Any additional setup required (authentication tokens, etc).
– Brief demonstration usage.
– If applicable, how the package compares to other similar packages and/or how it relates
to other packages.

– Citation information i.e. Direct users to the preferred citation in the README by adding
boilerplate text “here’s how to cite my package”. See e.g. ecmwfr README.

If you use another repo status badge such as a lifecycle badge, please also add a repostatus.org
badge. Example of a repo README with two repo status badges.

• Once you have submitted a package and it has passed editor checks, add a peer‑reviewbadge
via

19

https://docs.ropensci.org/cffr/
https://docs.ropensci.org/cffr/reference/cff_gha_update.html
https://ropensci.org/blog/2021/10/14/runiverse-badges/
https://remotes.r-lib.org/
https://pak.r-lib.org/
https://ropensci.org/blog/2021/06/22/setup-runiverse/
https://github.com/bluegreen-labs/ecmwfr#how-to-cite-this-package-in-your-article
https://www.tidyverse.org/lifecycle/
https://www.repostatus.org/
https://github.com/ropensci/ijtiff#ijtiff-

[![](https://badges.ropensci.org/<issue_id>_status.svg)](https://github.com/ropensci/software-review/issues/<issue_id>)

where issue_id is the number of the issue in the software‑review repository. For instance, the badge
forrtimicropem reviewuses thenumber 126 since it’s the review issuenumber. Thebadgewill first
indicated “under review” and then “peer‑reviewed” once your package has been onboarded (issue
labelled “approved” and closed), and will link to the review issue.

• If your READMEhasmany badges consider ordering them in an html table tomake it easier for
newcomers to gather information at a glance. See examples in drake repo and in qualtRics
repo. Possible sections are

– Development (CI statuses cf CI chapter, Slack channel for discussion, repostatus)
– Release/Published (CRAN version and release date badges from METACRAN, CRAN
checks API badge, Zenodo badge)

– Stats/Usage (downloads e.g. download badges from r‑hub/cranlogs) The table should
bemore wide than it is long in order to mask the rest of the README.

• If your package connects to a data source or online service, or wraps other software, con‑
sider that your package README may be the first point of entry for users. It should provide
enough information for users to understand the nature of the data, service, or software, and
provide links to other relevant data and documentation. For instance, a README should not
merely read, “Provides access to GooberDB,” but also include, “…, an online repository of
Goober sightings in South America. More information about GooberDB, and documentation
of database structure andmetadata can be found at link”.

• We recommend not creating README.md directly, but froma README.Rmd file (an RMarkdown
file) if you have any demonstration code. The advantage of the .Rmd file is you can combine
text with code that can be easily updated whenever your package is updated.

• Consider using usethis::use_readme_rmd() to get a template for a README.Rmd file and
to automatically set up a pre‑commit hook to ensure that README.md is always newer than
README.Rmd.

• Extensive examples should be kept for a vignette. If you want to make the vignettes more
accessible before installing the package, we suggest creating a website for your package.

• Add a code of conduct and contribution guidelines.

• See the gistr README for a good example README to follow for a small package, and
bowerbird README for a good example README for a larger package.

20

https://github.com/ropensci/rtimicropem
https://github.com/ropensci/software-review/issues/126
https://github.com/ropensci/drake
https://github.com/ropensci/qualtRics/
https://github.com/ropensci/qualtRics/
https://www.r-pkg.org/services#badges
https://github.com/r-hub/cchecksbadges
https://github.com/r-hub/cchecksbadges
https://github.com/r-hub/cranlogs.app#badges
https://github.com/ropensci/gistr#gistr
https://github.com/ropensci/bowerbird

1.7 Documentation

1.7.1 General

• All exported package functions should be fully documented with examples.

• If there is potential overlapor confusionwithotherpackagesproviding similar functionality or
having a similar name, add a note in the README, main vignette and potentially the Descrip‑
tion fieldofDESCRIPTION. Examples in rtweetREADME, rebirdREADME, and thenon‑rOpensci
package slurmR.

• The package should contain top‑level documentation for ?foobar, (or ?`foobar-package`
if there is a naming conflict). Optionally, you can use both ?foobar and ?`foobar-package`
for thepackage levelmanual file, using@aliases roxygen tag. usethis::use_package_doc()
adds the template for the top‑level documentation.

• The package should contain at least one HTML vignette providing a substantial coverage of
package functions, illustrating realistic use cases and how functions are intended to interact.
If the package is small, the vignette and the READMEmay have very similar content.

• As is the case for a README, top‑level documentation or vignettesmay be the first point of en‑
try for users. If your package connects to a data source or online service, or wraps other soft‑
ware, it shouldprovideenough information forusers tounderstand thenatureof thedata, ser‑
vice, or software, and provide links to other relevant data and documentation. For instance, a
vignette intro or documentation should not merely read, “Provides access to GooberDB,” but
also include, “…, an online repository of Goober sightings in South America. More informa‑
tion about GooberDB, and documentation of database structure andmetadata can be found
at link”. Any vignette should outline prerequisite knowledge to be able to understand the vi‑
gnette upfront.

The general vignette should present a series of examples progressing in complexity from basic to
advanced usage.

• Functionality likely to be usedby onlymore advancedusers or developersmight be better put
in a separate vignette (e.g. programming/NSE with dplyr).

• The README, the top‑level package docs, vignettes, websites, etc., should all have enough
informationat thebeginning to get a high‑level overviewof thepackageand the services/data
it connects to, and provide navigation to other relevant pieces of documentation. This is to
follow theprinciple ofmultiple points of entry i.e. to take into account the fact that anypieceof
documentationmay be the first encounter the user haswith the package and/or the tool/data
it wraps.

• The vignette(s) should include citations to software and papers where appropriate.

21

https://docs.ropensci.org/rtweet/
https://docs.ropensci.org/rebird/#auk-vs-rebird
https://uscbiostats.github.io/slurmR/index.html#vs
https://usethis.r-lib.org/reference/use_package_doc.html

• If your package provides access to a data source, we require that DESCRIPTION contains both
(1) A brief identification and/or description of the organisation responsible for issuing data;
and (2) The URL linking to public‑facing page providing, describing, or enabling data access
(which may often differ from URL leading directly to data source).

• Only use package startup messages when necessary (function masking for instance). Avoid
package startupmessages like “This is foobar 2.4‑0” or citation guidance because they can be
annoying to the user. Rely on documentation for such guidance.

• You can choose to have a README section about use cases of your package (other packages,
blog posts, etc.), example.

1.7.2 roxygen2 use

• We request all submissions to use roxygen2 for documentation. roxygen2 is an Rpackage that
compiles .Rd files to your man folder in your package from tags written above each function.
roxygen2 has support for Markdown syntax. One key advantage of using roxygen2 is that your
NAMESPACEwill always be automatically generated and up to date.

• More information on using roxygen2 documentation is available in the R packages book and
in roxygen2 website itself.

• If you were writing Rd directly without roxygen2, the Rd2roxygen package contains functions
to convert Rd to roxygen documentation.

• All functions should document the type of object returned under the @return heading.

• The default value for each parameter should be clearly documented. For example, instead
of writing A logical value determining if ..., you should write A logical value
(default `TRUE`) determining if It is also good practice to indicate the default
values directly in your function definition:

f <- function(a = TRUE) {
function code

}

• Documentation should support user navigation by including useful cross‑links between re‑
lated functions and documenting related functions together in groups or in common help
pages. In particular, the @family tags, that automatically creates “See also” links and can
help group functions together on pkgdown sites, is recommended for this purpose. See the
“manual” section of The R Packages book and the “function grouping” section of the present
chapter for more details.

22

https://github.com/ropensci/vcr#example-packages-using-vcr
https://roxygen2.r-lib.org/
https://roxygen2.r-lib.org/articles/rd-formatting.html
https://r-pkgs.org/man.html
https://roxygen2.r-lib.org/
https://cran.r-project.org/web/packages/Rd2roxygen/index.html
https://roxygen2.r-lib.org/reference/tags-index-crossref.html
https://pkgdown.r-lib.org/reference/build_reference.html
https://pkgdown.r-lib.org/reference/build_reference.html
https://r-pkgs.org/man.html
https://r-pkgs.org/man.html

• You can re‑use documentation pieces (e.g. details about authentication, related packages)
across the vignettes/README/man pages. Refer to roxygen2 vignette on documentation
reuse.

• For including examples, you can use the classic @examples tag (plural “examples”) but also
the @example <path> tag (singular “example”) for storing the example code in a separate R
script (ideally under man/), and the @exampleIf tag for running examples conditionally and
avoiding R CMD check failures. Refer to roxygen2 documentation about examples.

• Add#' @noRd to internal functions. Youmight be interested in thedevtag experimental pack‑
age for getting local manual pages when using #' @noRd.

• Starting from roxygen2 version 7.0.0, R6 classes are officially supported. See the roxygen2
docs for details on how to document R6 classes.

1.7.3 URLs in documentation

This subsection is particularly relevant to authors wishing to submit their package to CRAN.
CRAN will check URLs in your documentation and does not allow redirect status codes such as
301. You can use the urlchecker package to reproduce these checks and, in particular, replace
URLs with the URLs they redirect to. Others have used the option to escape some URLs (change
<https://ropensci.org/> to https://ropensci.org/, or \url{https://ropensci.org/}
to https://ropensci.org/.), but if you do so, you will need to implement some sort of URL
checking yourself to prevent them from getting broken without your noticing. Furthermore, links
would not be clickable from local docs.

1.8 Documentation website

We recommendcreating adocumentationwebsite for your packageusingpkgdown. TheRpackages
book features a chapter onpkgdown, andof coursepkgdownhas its owndocumentationwebsite.

There are a few elements we’d like to underline here.

1.8.1 Automatic deployment of the documentation website

You only need to worry about automatic deployment of your website until approval and trans‑
fer of your package repo to the ropensci organization; indeed, after that a pkgdown website will
be built for your package after each push to the GitHub repo. You can find the status of these
builds at https://dev.ropensci.org/job/package_name, e.g. for magick; and the website at
https://docs.ropensci.org/package_name, e.g. for magick. The website build will use your
pkgdown config file if you have one, except for the styling that will use the rotemplate package.

23

https://roxygen2.r-lib.org/articles/reuse.html
https://roxygen2.r-lib.org/articles/reuse.html
https://roxygen2.r-lib.org/articles/rd.html#examples
https://github.com/moodymudskipper/devtag
https://github.com/moodymudskipper/devtag
https://roxygen2.r-lib.org/articles/rd-other.html#r6
https://roxygen2.r-lib.org/articles/rd-other.html#r6
https://github.com/r-lib/urlchecker
https://github.com/r-lib/pkgdown
https://r-pkgs.org/website.html
https://pkgdown.r-lib.org/
https://dev.ropensci.org/job/magick
https://docs.ropensci.org/magick
https://github.com/ropensci-org/rotemplate/

The resulting website will have a local search bar. Please report bugs, questions and feature re‑
quests about the central builds at https://github.com/ropensci/docs/ and about the template at
https://github.com/ropensci/rotemplate/.

If your package vignettes need credentials (API keys, tokens, etc.) to knit, you might want to precom‑
pute them since credentials cannot be used on the docs server.

Before submission and before transfer, you could use the approach documented by pkgdown or the
tic package for automatic deployment of the package’s website. This would save you the hassle
of running (and remembering to run) pkgdown::build_site() yourself every time the site needs
to be updated. First refer to our chapter on continuous integration if you’re not familiar with con‑
tinuous integration. In any case, do not forget to update all occurrences of the website URL after
transfer to the ropensci organization.

1.8.2 Grouping functions in the reference

When your package has many functions, use grouping in the reference, which you can do more or
less automatically.

If you use roxygen2 above version 6.1.1, you should use the @family tag in your functions docu‑
mentation to indicate grouping. This will give you links between functions in the local documenta‑
tion of the installed package (“See also” section) and allow you to use the pkgdown has_concept
function in the config file of your website. Non‑rOpenSci example courtesy of optiRum: family tag,
pkgdown config file and resulting reference section. To customize the text of the cross‑reference
title created by roxygen2 (Other {family}:), refer to roxygen2 docs regarding how to provide a
rd_family_title list in man/roxygen/meta.R.

Less automatically, see the example of drakewebsite and associated config file.

1.8.3 Branding of authors

You canmake the names of (some) authors clickable by adding their URL, and you can even replace
their nameswith a logo (think rOpenSci…or your organisation/company!). See pkgdowndocumen‑
tation.

1.8.4 Tweaking the navbar

You canmake yourwebsite content easier tobrowseby tweaking thenavbar, refer topkgdowndocu‑
mentation. In particular, note that if you name themain vignette of your package “pkg‑name.Rmd”,
it’ll be accessible from the navbar as a Get started link instead of via Articles > Vignette
Title.

24

https://github.com/ropensci/docs/
https://github.com/ropensci/rotemplate/
https://ropensci.org/technotes/2019/12/08/precompute-vignettes/
https://ropensci.org/technotes/2019/12/08/precompute-vignettes/
https://pkgdown.r-lib.org/reference/deploy_site_github.html
https://docs.ropensci.org/tic/
https://github.com/lockedata/optiRum
https://github.com/lockedata/optiRum/blob/master/R/APR.R#L17
https://github.com/lockedata/optiRum/blob/master/_pkgdown.yml
https://itsalocke.com/optirum/reference/
https://roxygen2.r-lib.org/articles/rd.html#cross-references
https://roxygen2.r-lib.org/articles/rd.html#cross-references
https://docs.ropensci.org/drake/
https://github.com/ropensci/drake/blob/master/_pkgdown.yml
https://pkgdown.r-lib.org/reference/build_home.html?q=authors#yaml-config-authors
https://pkgdown.r-lib.org/reference/build_home.html?q=authors#yaml-config-authors
https://pkgdown.r-lib.org/articles/pkgdown.html#navigation-bar
https://pkgdown.r-lib.org/articles/pkgdown.html#navigation-bar

1.8.5 Mathjax

Once your package is transferred and it gets a website using our pkgdown template, if you want to
use Mathjax you’ll need to specify it in the pkgdown config file like so:

template:
params:

mathjax: true

1.8.6 Package logo

To use your package logo in the pkgdown homepage, refer to usethis::use_logo(). If your pack‑
age doesn’t have any logo, the rOpenSci docs builder will use rOpenSci logo instead.

1.9 Authorship

The DESCRIPTION file of a package should list package authors and contributors to a package, using
the Authors@R syntax to indicate their roles (author/creator/contributor etc.) if there is more than
one author, and using the comment field to indicate the ORCID ID of each author, if they have one
(cf this post). See this section of “Writing R Extensions” for details. If you feel that your reviewers
havemade a substantial contribution to the development of your package, youmay list them in the
Authors@R field with a Reviewer contributor type ("rev"), like so:

person("Bea", "Hernández", role = "rev",
comment = "Bea reviewed the package (v. X.X.XX) for rOpenSci, see <https://github.com/ropensci/software-review/issues/116>"),

Only include reviewers after asking for their consent. Read more in this blog post “Thanking Your
Reviewers: Gratitude through Semantic Metadata”. Please do not list editors as contributors. Your
participation in and contribution to rOpenSci is thanks enough!

1.9.1 Authorship of included code

Many packages include code from other software. Whether entire files or single functions are in‑
cluded from other packages, rOpenSci packages should follow the CRAN Repository Policy:

25

https://usethis.r-lib.org/reference/use_logo.html
https://ropensci.org/technotes/2018/10/08/orcid/
https://cran.rstudio.com/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file
https://ropensci.org/blog/2018/03/16/thanking-reviewers-in-metadata/
https://ropensci.org/blog/2018/03/16/thanking-reviewers-in-metadata/
https://cran.r-project.org/web/packages/policies.html

The ownership of copyright and intellectual property rights of all components of the
package must be clear and unambiguous (including from the authors specification in
the DESCRIPTION file). Where code is copied (or derived) from the work of others (in‑
cluding fromR itself), caremust be taken that any copyright/license statements are pre‑
served and authorship is not misrepresented.

Preferably, an ‘Authors@R’ field would be used with ‘ctb’ roles for the authors of such
code. Alternatively, the ‘Author’ field should list these authors as contributors.

Where copyrights are held by an entity other than the package authors, this should
preferably be indicated via ‘cph’ roles in the ‘Authors@R’ field, or using a ‘Copyright’
field (if necessary referring to an inst/COPYRIGHTS file).

Trademarks must be respected.

1.10 Licence

Thepackageneeds tohaveaCRANorOSI accepted license. Formore explanations around licensing,
refer to the R packages book.

1.11 Testing

• All packages should pass R CMD check/devtools::check() on all major platforms.

• All packages should have a test suite that coversmajor functionality of the package. The tests
should also cover the behavior of the package in case of errors.

• It is goodpractice towrite unit tests for all functions, andall package code in general, ensuring
key functionality is covered. Test coverage below 75% will likely require additional tests or
explanation before being sent for review.

• We recommend using testthat for writing tests. Strive to write tests as you write each new
function. This serves the obvious need to have proper testing for the package, but allows you
to think about variousways inwhich a function can fail, and todefensively code against those.
More information.

• Tests should be easy to understand. We suggest reading the blog post “Why Good Developers
Write Bad Unit Tests” by Michael Lynch.

• Packages with Shiny apps should use a unit‑testing framework such as shinytest2 or
shinytest to test that interactive interfaces behave as expected.

• For testing your functions creating plots, we suggest using vdiffr, an extension of the testthat
package that relies on testthat snapshot tests.

26

https://svn.r-project.org/R/trunk/share/licenses/license.db
https://opensource.org/licenses
https://r-pkgs.org/license.html
https://testthat.r-lib.org/
https://r-pkgs.org/tests.html
https://mtlynch.io/good-developers-bad-tests/
https://mtlynch.io/good-developers-bad-tests/
https://rstudio.github.io/shinytest2/
https://rstudio.github.io/shinytest/articles/shinytest.html
https://vdiffr.r-lib.org/
https://testthat.r-lib.org/articles/snapshotting.html

• If your package interacts with web resources (web APIs and other sources of data on the web)
youmight find the HTTP testing in R book by Scott Chamberlain andMaëlle Salmon relevant.
Packages helping with HTTP testing (corresponding HTTP clients):

– httptest2 (httr2);
– httptest (httr);
– vcr (httr, crul);
– webfakes (httr, httr2, crul, curl).

• testthat has a function skip_on_cran() that you can use to not run tests on CRAN. We rec‑
ommend using this on all functions that are API calls since they are quite likely to fail on
CRAN. These tests should still run on continuous integration. Note that from testthat 3.1.2
skip_if_offline()automatically callsskip_on_cran(). More info onCRANpreparedness
for API wrappers.

• If your package interacts with a database youmight find dittodb useful.

• Once you’ve set up continuous integration (CI), use your package’s code coverage report (cf
this section of our book) to identify untested lines, and to add further tests.

• Even if you use continuous integration, we recommend that you run tests locally prior to sub‑
mitting your package (youmight need to set Sys.setenv(NOT_CRAN="true")).

1.12 Examples

• Include extensive examples in the documentation. In addition to demonstrating how to use
thepackage, these canact as aneasyway to testpackage functionalitybefore thereareproper
tests. However, keep in mind we require tests in contributed packages.

• You can run examples with devtools::run_examples(). Note that when you run R CMD
CHECK or equivalent (e.g., devtools::check()) your examples that are not wrapped in
\dontrun{} or \donttest{} are run. Refer to the summary table in roxygen2 docs.

• To safe‑guard examples (e.g. requiring authentication) to be run on CRAN you need to use
\dontrun{}. However, for a first submission CRAN won’t let you have all examples escaped
so. In this case youmight add some small toy examples, or wrap example code in try(). Also
refer to the @exampleIf tag present, at the time of writing, in roxygen2 development version.

• In addition to running examples locally on your own computer, we strongly advise that you
run examples on one of the continuous integration systems. Again, examples that are not
wrapped in \dontrun{} or \donttest{}will be run, but for those that are you can configure
your continuous integration builds to run them via R CMD check arguments --run-dontrun
and/or --run-donttest.

27

https://books.ropensci.org/http-testing/
https://enpiar.com/httptest2/
https://httr2.r-lib.org/
https://enpiar.com/r/httptest/
https://httr.r-lib.org/
https://docs.ropensci.org/vcr/
https://httr.r-lib.org/
https://docs.ropensci.org/crul
https://webfakes.r-lib.org/
https://httr.r-lib.org/
https://httr2.r-lib.org/
https://docs.ropensci.org/crul
https://jeroen.r-universe.dev/curl
https://books.ropensci.org/http-testing/cran-preparedness.html
https://books.ropensci.org/http-testing/cran-preparedness.html
https://docs.ropensci.org/dittodb
https://roxygen2.r-lib.org/articles/rd.html#functions

1.13 Package dependencies

• Consider the trade‑offs involved in relying on a package as a dependency. On one hand, us‑
ing dependencies reduces coding effort, and can build on useful functionality developed by
others, especially if the dependency performs complex tasks, is high‑performance, and/or is
well vetted and tested. On the other hand, havingmany dependencies places a burden on the
maintainer tokeepupwith changes in thosepackages, at risk toyourpackage’s long‑termsus‑
tainability. It also increases installation time and size, primarily a consideration on your and
others’ development cycle, and in automated build systems. “Heavy” packages ‑ those with
many dependencies themselves, and those with large amounts of compiled code ‑ increase
this cost. Here are some approaches to reducing dependencies:

– Small, simple functions fromadependencypackagemaybebetter copied into your own
package if the dependency if you are using only a few functions in an otherwise large
or heavy dependency. (See Authorship section above for how to acknowledge original
authors of copied code.) On the other hand, complex functions with many edge cases
(e.g. parsers) require considerable testing and vetting.

* An common example of this is in returning tidyverse‑style “tibbles” from package
functions that provide data. One can avoid the modestly heavy tibble package de‑
pendency by returning a tibble created bymodifying a data frame like so:

class(df) <- c("tbl_df", "tbl", "data.frame")

(Note that this approach is not universally endorsed.)

– Ensure that you are using the package where the function is defined, rather than one
where it is re‑exported. For instancemany functions indevtools can be found in smaller
specialty packages such as sessioninfo. The %>% function should be imported from
magrittr, where it is defined, rather than the heavier dplyr, which re‑exports it.

– Some dependencies are preferred because they provide easier to interpret function
names and syntax than base R solutions. If this is the primary reason for using a function
in a heavy dependency, consider wrapping the base R approach in a nicely‑named
internal function in your package. See e.g. the rlang R script providing functions with a
syntax similar to purrr functions.

– If dependencies have overlapping functionality, see if you can rely on only one.

– More dependency‑management tips can be found in the chapter “Dependencies: Mind‑
set and Background” of the R packages book and in a post by Scott Chamberlain.

• UseImports insteadof Depends for packagesproviding functions fromother packages. Make
sure to list packages used for testing (testthat), and documentation (knitr, roxygen2) in

28

https://twitter.com/krlmlr/status/1067856118385381377
https://github.com/r-lib/rlang/blob/9b50b7a86698332820155c268ad15bc1ed71cc03/R/standalone-purrr.R
https://github.com/r-lib/rlang/blob/9b50b7a86698332820155c268ad15bc1ed71cc03/R/standalone-purrr.R
https://r-pkgs.org/dependencies-mindset-background.html
https://r-pkgs.org/dependencies-mindset-background.html
https://recology.info/2018/10/limiting-dependencies/

yourSuggests sectionofpackagedependencies (if youuseusethis for adding testing infras‑
tructure via usethis::use_testthat() or a vignette via usethis::use_vignette(), the neces‑
sary packageswill be added to DESCRIPTION). If you use any package in the examples or tests
of your package, make sure to list it in Suggests, if not already listed in Imports.

• If your (not Bioconductor) package depends on Bioconductor packages, make sure the instal‑
lation instructions in the README and vignette are clear enough even for an user who is not
familiar with the Bioconductor release cycle.

– Should the user use BiocManager (recommended)? Document this.

– Is the automatic installation of Bioconductor packages by install.packages()
enough? In that case, mention that the user needs to run setRepositories() if they
haven’t set the necessary Bioconductor repositories yet.

– If your package depends on Bioconductor after a certain version, mention it in DESCRIP‑
TION and in the installation instructions.

• Specifyingminimum dependencies (e.g. glue (>= 1.3.0) instead of just glue) should be a
conscious choice. If you know for a fact that your package will break below a certain depen‑
dency version, specify it explicitly. But if you don’t, then no need to specify a minimum de‑
pendency. In that casewhen auser reports a bugwhich is explicitly related to anolder version
of a dependency then address it then. An example of bad practicewould be for a developer to
consider the versions of their current state of dependencies to be the minimal version. That
would needlessly force everyone to upgrade (causing issueswith other packages) when there
is no good reason behind that version choice.

• For most cases where you must expose functions from dependencies to the user, you should
import and re‑export those individual functions rather than listing them in theDepends fields.
For instance, if functions in your package produce raster objects, you might re‑export only
printing and plotting functions from the raster package.

• If your package uses a system dependency, you should

– Indicate it in DESCRIPTION;

– Check that it is listed by sysreqsdb to allow automatic tools to install it, and submit a
contribution if not;

– Check for it in a configure script (example) and give a helpful error message if it can‑
not be found (example). configure scripts can be challenging as they often require
hacky solutions to make diverse system dependencies work across systems. Use exam‑
ples (more here) as a starting point but note that it is common to encounter bugs and
edge cases and often violate CRANpolicies. Do not hesitate to ask for help on our forum.

29

https://usethis.r-lib.org/reference/use_testthat.html
https://usethis.r-lib.org/reference/use_vignette.html
https://www.bioconductor.org/install/index.html#why-biocmanagerinstall
https://github.com/r-hub/sysreqsdb#sysreqs
https://github.com/r-hub/sysreqsdb#contributing
https://github.com/r-hub/sysreqsdb#contributing
https://github.com/ropensci/magick/blob/c116b2b8505f491db72a139b61cd543b7a2ce873/DESCRIPTION#L19
https://github.com/cran/webp/blob/master/configure
https://github.com/search?q=org%3Acran+anticonf&type=Code
https://discuss.ropensci.org/

1.14 Recommended scaffolding

• ForHTTP requestswe recommendusinghttr2, httr, curl, or crul over RCurl. If you like low level
clients for HTTP, curl is best, whereas httr2, httr and crul are better for higher level access.

• For parsing JSON, use jsonlite instead of rjson or RJSONIO.

• For parsing, creating, and manipulating XML, we strongly recommend xml2 for most cases.
You can refer to Daniel Nüst’s notes about migration from XML to xml2.

• For spatial data, the sp package should be considered deprecated in favor of sf, and the pack‑
ages rgdal, rgdal, and rgdalwill be retiredby theendof 2023. We recommenduseof the spatial
suites developed by the r‑spatial and rspatial communities. See this GitHub issue for relevant
discussions.

1.15 Version Control

• Your package source files have to be under version control, more specifically tracked with
Git. You might find the gert package relevant, as well as some of usethis Git/GitHub related
functionality; you can however use git as you want.

• Make sure to list “scrap” such as .DS_Store files in .gitignore. You might find the
usethis::git_vaccinate() function, and the gitignore package relevant.

• A later section of this book contains some git workflow tips.

1.16 Miscellaneous CRAN gotchas

This is a collection of CRAN gotchas that are worth avoiding at the outset.

• Make sure your package title is in Title Case.
• Do not put a period on the end of your title.
• Donot put ‘in R’ or ‘with R’ in your title as this is obvious frompackages hostedonCRAN. If you
would like this information to be displayed on your website nonetheless, check the pkgdown
documentation to learn how to override this.

• Avoid starting the description with the package name or “This package…”.
• Make sure you include links to websites if you wrap a web API, scrape data from a site, etc. in
the Description field of your DESCRIPTION file. URLs should be enclosed in angle brackets,
e.g. <https://www.r-project.org>.

• In both the Title and Description fields, the names of packages or other external software
must be quoted using single quotes (e.g., ‘Rcpp’ Integration for the ‘Armadillo’ Templated Lin‑
ear Algebra Library).

30

https://httr2.r-lib.org
https://httr.r-lib.org
https://jeroen.r-universe.dev/curl
http://docs.ropensci.org/crul/
https://cran.rstudio.com/web/packages/RCurl/
https://github.com/jeroen/jsonlite
https://cran.rstudio.com/web/packages/rjson/
https://cran.rstudio.com/web/packages/RJSONIO/
https://cran.rstudio.com/web/packages/xml2/
https://gist.github.com/nuest/3ed3b0057713eb4f4d75d11bb62f2d66
https://github.com/edzer/sp/
https://r-spatial.github.io/sf/
https://github.com/r-spatial
https://github.com/rspatial
https://github.com/ropensci/software-review-meta/issues/47
https://happygitwithr.com/
https://docs.ropensci.org/gert/
https://usethis.r-lib.org/reference/index.html#section-git-and-github
https://usethis.r-lib.org/reference/index.html#section-git-and-github
https://usethis.r-lib.org/reference/git_vaccinate.html
https://docs.ropensci.org/gitignore/
https://pkgdown.r-lib.org/reference/build_home.html#yaml-config-home
https://pkgdown.r-lib.org/reference/build_home.html#yaml-config-home

• Avoid long running tests and examples. Consider testthat::skip_on_cran in tests to skip
things that take a long time but still test them locally and on continuous integration.

• Include top‑level files such as paper.md, continuous integration configuration files, in your
.Rbuildignore file.

For further gotchas, refer to the collaborative list maintained by ThinkR, “Prepare for CRAN”.

1.16.1 CRAN checks

Once your package is on CRAN, it will be regularly checked on different platforms. Failures of such
checks, when not false positives, can lead to the CRAN team’s reaching out. You can monitor the
state of the CRAN checks via

• the foghorn package.

• the CRAN checks badges.

1.17 Bioconductor gotchas

If you intend your package to be submitted to, or if your package is on, Bioconductor, refer to Bio‑
conductor packaging guidelines and the updated developer book.

1.18 Further guidance

• If you are submitting a package to rOpenSci via the software‑review repo, you can direct fur‑
ther questions to the rOpenSci team in the issue tracker, or in our discussion forum.

• Read the authors guide.

• Read, incorporate, and act on advice from the Collaboration Guide chapter.

1.18.1 Learning about package development

1.18.1.1 Books

• Hadley Wickham and Jenny Bryan’s R packages book is an excellent, readable resource on
package development which is available for free online (and can be bought in print).

• Writing R Extensions is the canonical, usually most up‑to‑date, reference for creating R pack‑
ages.

31

https://github.com/ThinkR-open/prepare-for-cran
https://blog.r-hub.io/2019/04/25/r-devel-linux-x86-64-debian-clang/#cran-checks-101
https://fmichonneau.github.io/foghorn/
https://github.com/r-hub/cchecksbadges
https://www.bioconductor.org/developers/package-guidelines/
https://www.bioconductor.org/developers/package-guidelines/
https://contributions.bioconductor.org/
https://github.com/ropensci/software-review
https://discuss.ropensci.org/
https://r-pkgs.org/
https://r-pkgs.org/
https://www.oreilly.com/library/view/r-packages/9781491910580/
https://cran.r-project.org/doc/manuals/r-release/R-exts.html

• Mastering Software Development in R by Roger D. Peng, Sean Kross, and Brooke Anderson.

• Advanced R by Hadley Wickham

• Tidyverse style guide

• Tidyverse design guide (WIP) and the accompanying newsletter.

1.18.1.2 Tutorials

• Your first R package in 1 hour by Shannon Pileggi.

• this workflow description by Emil Hvitfeldt.

• This pictorial by Matthew J Denny.

1.18.1.3 Blogs

• R‑hub blog.

• Some posts of the rOpenSci blog e.g. “How to precompute package vignettes or pkgdown
articles”.

• Package Development Corner section of rOpenSci newsletter.

• Some posts of the tidyverse blog e.g. “Upgrading to testthat edition 3”.

1.18.1.4 MOOCs

There is a Coursera specialization corresponding to the book by Roger Peng, Sean Kross andBrooke
Anderson, with a course specifically about R packages.

32

https://bookdown.org/rdpeng/RProgDA/
https://adv-r.hadley.nz/
https://style.tidyverse.org/
https://design.tidyverse.org/
http://tidydesign.substack.com/
https://www.pipinghotdata.com/posts/2020-10-25-your-first-r-package-in-1-hour/
https://www.emilhvitfeldt.com/post/2018-09-02-usethis-workflow-for-package-development/
https://www.mjdenny.com/R_Package_Pictorial.html
https://blog.r-hub.io/post
https://ropensci.org/archive/
https://ropensci.org/blog/2019/12/08/precompute-vignettes/
https://ropensci.org/blog/2019/12/08/precompute-vignettes/
https://ropensci.org/news/
https://www.tidyverse.org
https://www.tidyverse.org/blog/2022/02/upkeep-testthat-3/
https://fr.coursera.org/specializations/r
https://fr.coursera.org/specializations/r

2 Continuous Integration Best Practices

This chapter summarizes our guidelines about continuous integration after explaining what
continuous integration is.

Along with the previous chapter, it forms our guidelines for Software Peer Review.

2.1 What is continuous integration (CI)?

Continuous integration automatically runs tests on software. In the case of rOpenSci, CI practically
means that a set of tests will be automatically run via GitHub, every time that you make a commit
or pull request to GitHub.

CI automates the running of general package checks such as R CMD check, see testing. It is possi‑
ble to set up CI before your tests are written, then CI will run the tests as you commit them to the
repository.

2.2 Why use continuous integration (CI)?

All rOpenSci packages must use one form of continuous integration. This ensures that all commits,
pull requests and newbranches are run through R CMD check. The results of all tests are displayed
on the pull request page on GitHub, providing another layer of information about problems and
protection against breaking your package beforemerging changes. rOpenSci packages’ continuous
integration must also be linked to a code coverage service, indicating how many lines are covered
by unit tests.

Both test status and code coverage should be reported via badges in your package README.

R packages should have CI for all operating systems (Linux, Mac OSX, Windows) when they con‑
tain:

• Compiled code

• Java dependencies

• Dependencies on other languages

33

./building.html#testing

• Packages with system calls

• Text munging such as getting people’s names (in order to find encoding issues).

• Anything with file system / path calls

In case of any doubt regarding the applicability of these criteria to your package, it’s better to add CI
for all operating systems. Most CI services standards setups for R packages allow this with notmuch
hassle.

2.3 Which continuous integration service(s)?

There are a number of continuous integration services, including standalone services (CircleCI, Ap‑
pVeyor), and others integrated into code hosting or related services (GitHub Actions, GitLab, AWS
Code Pipeline). Different services support different operating system configurations.

GitHub Actions is a convenient option for many R developers who already use GitHub as it is
integrated into the platform and supports all needed operating Systems. There are actions sup‑
ported for the R ecosystem, as well and first‑class support in the {usethis} package. All packages
submitted to rOpenSci for peer review are checked by our own pkgcheck system, described
further in the Guide for Authors. These checks are also provided as a GitHub Action in the
ropensci-review-tools/pkgcheck-action repository. Packages authors are encouraged to
use that action to confirm prior to submission that a package passes all of our checks. See our blog
post for more information.

usethis supports CI setup for other systems, though these functions are soft‑deprecated. rOpenSci
also supports the circle package, which aids in setting up CircleCI pipelines, and the tic package for
building more complicated CI pipelines.

2.3.0.1 Testing using different versions of R

Werequire that rOpenSci packagesare testedagainst the latest, previousanddevelopment versions
of R to ensure both backwards and forwards compatibility with base R.

Details of how to run tests/checks using different versions of R locally can be found in the R‑hub
vignette on running Local Linux checks with Docker.

You can fine tune the deployment of tests with each versions by using a testing matrix.

If you develop a package depending on or intended for Bioconductor, you might find biocthis rele‑
vant.

34

https://github.com/features/actions
https://github.com/r-lib/actions/
https://github.com/r-lib/actions/
https://usethis.r-lib.org/reference/github_actions.html
https://docs.ropensci.org/pkgcheck
https://github.com/ropensci-review-tools/pkgcheck-action
https://ropensci.org/blog/2022/02/01/pkgcheck-action/
https://ropensci.org/blog/2022/02/01/pkgcheck-action/
https://usethis.r-lib.org/reference/ci.html
https://docs.ropensci.org/circle/
https://docs.ropensci.org/tic/
https://r-hub.github.io/rhub/articles/local-debugging.html
https://lcolladotor.github.io/biocthis/index.html

2.3.0.2 Minimizing build times on CI

You can use these tips to minimize build time on CI:

• Cache installation of packages. The default r‑lib/actions workflows do this.

2.3.0.3 System dependencies

You might find Hugo Gruson’s post System Dependencies in R Packages & Automatic Testing use‑
ful.

2.3.1 Travis CI (Linux and Mac OSX)

We recommendmoving away from Travis.

2.3.2 AppVeyor CI (Windows)

Forcontinuous integrationonWindows, seeR+AppVeyor. Set it upusingusethis::use_appveyor().

Here are tips to minimize AppVeyor build time:

• Cache installation of packages. Example in a config file. It’ll already be in the config file if you
set AppVeyor CI up using usethis::use_appveyor().

• Enable rolling builds.

We no longer transfer AppVeyor projects to ropensci AppVeyor account so after transfer of
your repo to rOpenSci’s “ropensci” GitHub organization the badge will be [![AppVeyor Build
Status](https://ci.appveyor.com/api/projects/status/github/ropensci/pkgname?branch=master&svg=true)](https://ci.appveyor.com/project/individualaccount/pkgname).

2.3.3 Circle CI (Linux and Mac OSX)

Circle CI is used, for example, by rOpenSci package bomrang as continuous integration service.

35

https://github.com/r-lib/actions
https://blog.r-hub.io/2023/09/26/system-dependency/
https://ropensci.org/technotes/2020/11/19/moving-away-travis/
https://github.com/krlmlr/r-appveyor
https://github.com/r-lib/usethis/blob/2c52c06373849d52f78a26c5a0e080f518a2f825/inst/templates/appveyor.yml#L13
https://www.appveyor.com/docs/build-configuration/#rolling-builds
https://circleci.com/
https://github.com/ropensci/bomrang

2.4 Test coverage

Continuous integration should also include reporting of test coverage via a testing service such as
Codecov or Coveralls.

We recommendusingCodecov. ToactivateCodecov for your repo, runusethis::use_github_action("test-coverage")
to create a file .github/workflows/test-coverage.yaml. You also need to give Codecov access
to your github repository, see Codecov quick start guide for how to set up access. Then add a
Codecov status badge to the top of your README.md, see Codecov status badges.

Currently, Codecovhas access to all ropensci github repositories bydefault. When your repository is
accepted and transferred to ropensci, Codecov access should transfer automatically. You will need
to update the URL of the badge to point to the rOpenSci‑hosted repository.

Formoredetails, see theREADME for thecovrpackage for instructions, aswell asusethis::use_coverage()
and usethis::use_github_action().

If you run coverage on several CI services the results will be merged.

2.5 Evenmore CI: OpenCPU

After transfer to rOpenSci’s “ropensci” GitHub organization, each push to the repo will be built on
OpenCPU and the person committing will receive a notification email. This is an additional CI ser‑
vice for package authors that allows for R functions in packages to be called remotely via https://
ropensci.ocpu.io/ using the opencpu API. Formore details about this service, consult the OpenCPU
help page that also indicates where to ask questions.

2.6 Evenmore CI: rOpenSci docs

After transfer to rOpenSci’s “ropensci” GitHub organization, a pkgdown website will be built
for your package after each push to the GitHub repo. You can find the status of these builds at
https://ropensci.r-universe.dev/ui#packages and in the commit status. Thewebsite build
will use your pkgdown config file if you have one, except for the styling thatwill use the rotemplate
package.

Please report bugs, questions and feature requests about the central builds and about the template
at https://github.com/ropensci‑org/rotemplate/.

36

https://codecov.io/
https://coveralls.io/
https://docs.codecov.com/docs/quick-start
https://docs.codecov.com/docs/status-badges
https://github.com/r-lib/covr
https://usethis.r-lib.org/reference/use_coverage.html
https://usethis.r-lib.org/reference/github_actions.html
https://docs.codecov.io/docs/merging-reports
https://ropensci.ocpu.io/
https://ropensci.ocpu.io/
https://www.opencpu.org/api.html#api-json
https://www.opencpu.org/help.html
https://ropensci.org/blog/2021/09/03/runiverse-docs/#how-it-works
https://github.com/ropensci-org/rotemplate/
https://github.com/ropensci-org/rotemplate/
https://github.com/ropensci-org/rotemplate/

3 Package Development Security Best Practices

This work‑in‑progress chapter includes guidance about managing secrets in packages and
links for further reading.

3.1 Miscellaneous

We recommend the article Ten quick tips for staying safe online by Danielle Smalls and Greg Wil‑
son.

3.2 GitHub access security

• We recommend you secure your GitHub account with two‑factor (authentication) 2FA. It is
compulsory for all ropensci GitHub organizationmembers and outside collaborators somake
sure to enable it before your package is approved.

• We also recommend you regularly checkwho has access to your package repository, and that
you prune any unused access (such as from former collaborators).

3.3 https

• If the web service your package wraps has either https or http, opt for https.

3.4 Secrets in packages

This section contains guidance for when you develop a package interacting with a web resource
requiring credentials (API keys, tokens, etc.). Also refer to thehttr vignette about sharing secrets.

37

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008563
https://help.github.com/articles/securing-your-account-with-two-factor-authentication-2fa/
https://httr.r-lib.org/articles/secrets.html

3.4.1 Secrets in packages and user protection

Say your package needs an API key for making requests on behalf of users of your package.

• In your package documentation, guide the user so the API key doesn’t end up in the .Rhis‑
tory/script of users of your package.

– Encourage the use of environment variables to store the API key (or even remove the
possibility to pass it as an argument to the functions?). You could link to this intro to
startup files and usethis::edit_r_environ().

– Or your package could depend on, or encourage the use of, keyring to help user store
variables in the specificOS’ credential stores (more secure than .Renviron): i.e. you’d cre‑
ate a function for setting the key, and have another one for retrieving the key; or the user
would write Sys.setenv(SUPERSECRETKEY = keyring::key_get("myservice"))
at the beginning of their script.

– Do not print the API key even in verbose mode in any message, warning, error.

• In theGitHub issue template, it shouldbe statednot to share any credentials. If anuser of your
package accidentally shares credentials in an issue, make sure they’re aware of that so they
can revoke the key (i.e. ask them explicitly in an answer whether they realized they shared
their key).

3.4.2 Secrets in packages and development

You’ll need to protect your secrets as you protect secrets of users, but there’s more to take into ac‑
count and keep in mind.

3.4.2.1 Secrets and recorded requests in tests

If you use vcr or httptest in tests for caching API responses, you need to make sure the recorded
requests / fixtures do not contain secrets. Refer to vcr security guidance and httptest guidance
“Redacting andModifying RecordedRequests”, and inspect your recorded requests / fixtures before
committing them the first time to be sure you got the setup right.

vcr being an rOpenSci package, you can post any question youmight have to rOpenSci forum.

38

https://rstats.wtf/r-startup.html
https://rstats.wtf/r-startup.html
https://usethis.r-lib.org/reference/edit.html
https://github.com/r-lib/keyring#readme
https://github.com/r-lib/keyring#readme
https://docs.ropensci.org/vcr/
https://enpiar.com/r/httptest/
https://books.ropensci.org/http-testing/security-chapter.html
https://enpiar.com/r/httptest/articles/redacting.html
https://enpiar.com/r/httptest/articles/redacting.html
https://discuss.ropensci.org/

3.4.2.2 Share secrets with CI services

Now, youmight need to share secrets with continuous integration services.

You could store API keys as environment variables / secrets, referring to the docs of the CI service.

For more details and workflow advice, refer to the gargle article “Managing tokens securely” and
the security chapter of the HTTP testing in R book.

Document the steps you made in CONTRIBUTING.md so you, or say a newmaintainer, can remem‑
ber how to do that next time.

3.4.2.3 Secrets and collaborations

What about pull requests from external contributors? On GitHub for instance, secrets are only avail‑
able for GitHub Actions for pull requests started from the repository itself, not from fork. Tests using
your secrets will fail unless you use some sort of mocked/cached response, so you might want to
skip them depending on the context. For instance, in your CI account you could create an environ‑
ment variable called THIS_IS_ME and then skip tests based on the presence of this variable. This
obviously means the PR checks by the CI are not exhaustive, so you’ll need to check out the PR
locally to run all tests.

Document the behavior of your package for external PRs in CONTRIBUTING.md for the sake of peo‑
ple making PRs and of people reviewing them (you in a few weeks, and other authors of the pack‑
age).

3.4.3 Secrets and CRAN

On CRAN, skip any tests (skip_on_cran()) and examples (dontrun) requiring credentials.

Precompute vignettes requiring credentials.

3.5 Further reading

Useful security resources:

• rOpenSci community call “Security for R” (recording, slides, etc. see in particular the list of
resources);

• the security‑related projects of unconf18;

• gargle article “Managing tokens securely”

39

https://gargle.r-lib.org/articles/articles/managing-tokens-securely.html
https://books.ropensci.org/http-testing/security-chapter.html
https://ropensci.org/technotes/2019/12/08/precompute-vignettes/
https://ropensci.org/commcalls/2019-05-07/
https://ropensci.org/blog/2019/04/09/commcall-may2019/#resources
https://ropensci.org/blog/2019/04/09/commcall-may2019/#resources
https://ropensci.org/blog/2018/06/06/unconf18_recap_2/
gargle.r-lib.org/articles/articles/managing-tokens-securely.html

Part II

Software Peer Review of Packages

40

4 Software Peer Review, Why? What?

This chapter contains a general intro to our software peer review system for packages, rea‑
sons to submit a package, reasons to volunteer as a reviewer, why our reviews are open, and
acknowledgements of actors of the system.

Our system has recently been expanded to statistical software peer‑review.

If you use our standards/checklists etc. when reviewing software elsewhere, do tell the recipients
(e.g. journal editors, students, internal code review) that they came from rOpenSci, and tell us in
our public forum, or privately by email.

4.1 What is rOpenSci Software Peer Review?

rOpenSci’s suite of packages is partly contributed by staffmembers and partly contributed by com‑
munity members, which means the suite stems from a great diversity of skills and experience of
developers. How to ensure quality for the whole set? That’s where software peer review comes into
play: packages contributed by the community undergo a transparent, constructive, non adversar‑
ial and open review process. For that process relying mostly on volunteer work, associate editors
manage the incoming flowandensureprogress of submissions; authors create, submit and improve
their package; reviewers, two per submission, examine the software code and user experience. This
blog postwritten by rOpenSci editors is a good introduction to rOpenSci software peer reviewOther
blog posts about review itself and reviewedpackages canbe find via the “software‑peer‑review” tag
on rOpenSci blog.

You can recognize rOpenSci packages that have been peer‑reviewed via a green “peer‑reviewed”
badge in their README, linking to their reviews (cf this example); and via a blue comment icon near
their description on rOpenSci packages page, also linking to the reviews.

Technically, wemake the most of GitHub infrastructure: each package review process is an issue in
the ropensci/software‑review GitHub repository. For instance, click here to read the review thread
of the ropenaq package: the process is an ongoing conversation until acceptance of the package,
with two external reviews as important milestones. Furthermore, we use GitHub features such as
the use of issue templates (as submission templates), and labelling which we use to track progress
of submissions (from editor checks to approval).

41

https://ropensci.org/stat-software-review/
https://discuss.ropensci.org/c/usecases
https://ropensci.org/contact/
https://ropensci.org/packages/
https://www.numfocus.org/blog/how-ropensci-uses-code-review-to-promote-reproducible-science/
https://www.numfocus.org/blog/how-ropensci-uses-code-review-to-promote-reproducible-science/
https://ropensci.org/tags/software-peer-review/
https://ropensci.org/tags/software-peer-review/
https://github.com/ropensci/restez#locally-query-genbank-
https://ropensci.org/packages/
https://github.com/
https://github.com/ropensci/software-review/
https://github.com/ropensci/software-review/issues/24

4.2 Why submit your package to rOpenSci?

• First, and foremost, we hope you submit your package for review because you value the
feedback. We aim to provide useful feedback to package authors and for our review process
to be open, non‑adversarial, and focused on improving software quality.

• Once aboard, your packagewill continue to receive support from rOpenScimembers. You’ll
retain ownership and control of your package, but we can help with ongoing maintenance
issues such as those associated with updates to R and dependencies and CRAN policies.

• rOpenSci will promote your package through our webpage, blog, and social media (like
Mastodon and Twitter). Packages in our suite also get a documentation website that is
automatically built and deployed after each push.

• rOpenSci packages can be cross‑listed with other repositories such as CRAN and BioCon‑
ductor.

• rOpenSci packages that are in scope for the Journal of Open‑Source Software and add the
necessary accompanying short paper, would, at the discretion of JOSS editors, benefit from
a fast‑tracked review process.

• If you write one, rOpenSci will promote gitbooks related to your package: the source of
such books can be transferred to the ropensci-books GitHub organisation for books to be
listed at books.ropensci.org.

4.3 Why review packages for rOpenSci?

• As in any peer‑review process, we hope you choose to review to give back to the rOpenSci
and scientific communities. Our mission to expand access to scientific data and promote a
culture of reproducible research is only possible through the volunteer efforts of community
members like you.

• Review is a two‑way conversation. By reviewing packages, you’ll have the chance to continue
to learn development practices from authors and other reviewers.

• The open nature of our review process allows you to network andmeet colleagues and col‑
laborators through the review process. Our community is friendly and filled with supportive
members expert in R development andmany other areas of science and scientific computing.

• To volunteer to be one of our reviewers, fill out this short form providing your contact infor‑
mation and areas of expertise. We are always looking for more reviewers with both general
package‑writing experience and domain expertise in the fields where packages are used.

4.4 Why are reviews open?

Our reviewing threads are public. Authors, reviewers, and editors all know each other’s identities.
The broader community can view or even participate in the conversation as it happens. This pro‑

42

https://ropensci.org/packages/
https://ropensci.org/blog/
https://fosstodon.org/@ropensci
https://twitter.com/ropensci
https://joss.theoj.org/
https://github.com/ropensci-books
https://books.ropensci.org/
https://airtable.com/shrnfDI2S9uuyxtDw

vides an incentive to be thorough and provide non‑adversarial, constructive reviews. Both authors
and reviewers report that they enjoy and learn more from this open and direct exchange. It also
has the benefit of building a community. Participants have the opportunity to meaningfully net‑
work with new peers, and new collaborations have emerged via ideas spawned during the review
process.

We are aware that open systems can have drawbacks. For instance, in traditional academic review,
double‑blind peer review can increase representation of female authors, suggesting bias in non‑
blind reviews. It is alsopossible reviewers are less critical in open review. However,weposit that the
opennessof the reviewconversationprovidesa checkon reviewquality andbias; it’s harder to inject
unsupported or subjective comments in public and without the cover of anonymity. Ultimately,
we believe that having direct and public communication between authors and reviewers improves
quality and fairness of reviews.

Furthermore, authors and reviewers have the ability to contact privately the editors if they have any
doubt or question.

4.5 Howwill users know a package has been reviewed?

• Your package READMEwill feature a peer‑review badge linking to the software review thread.
• Your package will get a docs.ropensci.org docs website that you can link from DESCRIP‑
TION.

• Your package repo will be transferred to the rOpenSci organization.
• If reviewers agree to be listed in DESCRIPTION, their metadata will mention the review.

4.6 Editors and reviewers

4.6.1 Associate editors

rOpenSci’s Software Peer Review process is run by:

• Noam Ross, EcoHealth Alliance
• Karthik Ram, rOpenSci
• Maëlle Salmon, rOpenSci
• Mark Padgham, rOpenSci
• Anna Krystalli, University of Sheffield RSE
• Melina Vidoni, RMIT University (School of Science)
• Mauro Lepore, 2 Degrees Investing Initiative
• Laura DeCicco, USGS
• Julia Gustavsen, Agroscope
• Emily Riederer, Capital One

43

https://ropensci.org/tags/reviewer/
https://www.sciencedirect.com/science/article/pii/S0169534707002704
https://github.com/noamross
https://github.com/karthik
https://github.com/maelle
https://github.com/mpadge
https://github.com/annakrystalli
https://github.com/melvidoni
https://github.com/maurolepore
https://github.com/ldecicco-USGS
https://github.com/jooolia
https://github.com/emilyriederer

• Adam Sparks, Department of Primary Industries and Regional Development
• Jeff Hollister, US Environmental Protection Agency

4.6.2 Reviewers

We are grateful to the following individuals who have offered up their time and expertise to review
packages submitted to rOpenSci.

Sam Albers · Toph Allen · Kaique dos S. Alves · Brooke Anderson · Alison Appling · Denisse Fierro Ar‑
cos · Zebulun Arendsee · Taylor Arnold · Al‑Ahmadgaid B. Asaad · Dean Attali · Mara Averick · Suzan
Baert · James Balamuta · Vikram Baliga · David Bapst · Joëlle Barido‑Sottani · Allison Barner · Cale
Basaraba · John Baumgartner · Marcus Beck · Gabriel Becker · Jason Becker · Dom Bennett · Ken
Benoit · Aaron Berdanier · Fred Boehm · Carl Boettiger · Will Bolton · Ben Bond‑Lamberty · Anne‑
Sophie Bonnet‑Lebrun · Alison Boyer · Abby Bratt · François Briatte · Eric Brown · Julien Brun · Jenny
Bryan · Lukas Burk · Lorenzo Busetto · Maria Paula Caldas · Mario Gavidia Calderón · Brad Cannell ·
Joaquin Cavieres · Kevin Cazelles · Scott Chamberlain · Cathy Chamberlin · Jennifer Chang · Pierre
Chausse · Jorge Cimentada · Nicholas Clark · Chase Clark · Jon Clayden · Dena Jane Clink · Will Corn‑
well · Nic Crane · Enrico Crema · Verónica Cruz‑Alonso · Ildiko Czeller · Tad Dallas · Kauê de Sousa
· Christophe Dervieux · Amanda Dobbyn · Jasmine Dumas · Remko Duursma · Mark Edmondson ·
Paul Egeler · Evan Eskew · Harry Eslick · Salvador Fernandez · Alexander Fischer · Kim Fitter · Robert
M Flight · Sydney Foks · Stephen Formel · Zachary Stephen Longiaru Foster · Auriel Fournier · Kaija
Gahm · ZachGajewski · Carl Ganz · DuncanGarmonsway · Jan LaurensGeffert · SharlaGelfand ·Mon‑
ica Gerber · Duncan Gillespie · David Gohel · A. Cagri gokcek · Guadalupe Gonzalez · Rohit Goswami
· Laura Graham · Charles Gray · Matthias Grenié · Corinna Gries · Hugo Gruson · Ernest Guevarra · W
Kyle Hamilton · Ivan Hanigan · Jeffrey Hanson · Rayna Harris · Ted Hart · Nujcharee Haswell · Verena
Haunschmid · Stephanie Hazlitt · Andrew Heiss · Max Held · Anna Hepworth · Bea Hernandez · Jim
Hester · Peter Hickey · Roel Hogervorst · Kelly Hondula · AllisonHorst · SeanHughes · JamesHunter ·
Brandon Hurr · Ger Inberg · Christopher Jackson · Najko Jahn · Tamora D James · Veronica Jimenez‑
Jacinto · Mike Johnson · Will Jones · Max Joseph · Megha Joshi · Krunoslav Juraic · Soumya Kalra ·
ZhianN. Kamvar ·Michael Kane · AndeeKaplan · Tinula Kariyawasam ·Hazel Kavılı · JonathanKeane
· Christopher T. Kenny · Os Keyes · Eunseop Kim · Aaron A. King · Michael Koontz · Bianca Kramer ·
Will Landau · Sam Lapp · Erin LeDell · Thomas Leeper · Sam Levin · Lisa Levinson · Stephanie Locke
· Marion Louveaux · Robin Lovelace · Julia Stewart Lowndes · Tim Lucas · Muralidhar, M.A. · Andrew
MacDonald · Jesse Maegan · Mike Mahoney · Tristan Mahr · Paula Andrea Martinez · Joao Martins ·
Ben Marwick · Claire Mason · Miles McBain · Lucy D’Agostino McGowan · Amelia McNamara · Elaine
McVey · Bryce Mecum · Nolwenn Le Meur · François Michonneau · Mario Miguel · Helen Miller · Beat‑
riz Milz · Jessica Minnier · Priscilla Minotti · Nichole Monhait · Kelsey Montgomery · Paula Moraga ·
Natalia Morandeira · Ross Mounce · Athanasia Monika Mowinckel · Lincoln Mullen · Matt Mulvahill
· Maria Victoria Munafó · David Neuzerling · Dillon Niederhut · Joel Nitta · Rory Nolan · Kari Nor‑
man · Jakub Nowosad · Matt Nunes · Daniel Nüst · Lauren O’Brien · Joseph O’Brien · Paul Oldham ·
Samantha Oliver · Dan Olner · Jeroen Ooms · Luis Osorio · Philipp Ottolinger · Mark Padgham · Ma‑
rina Papadopoulou · Edzer Pebesma · Thomas Lin Pedersen · Antonio J. Pérez‑Luque · Marcelo S.

44

https://github.com/adamhsparks
https://github.com/jhollist
https://github.com/boshek
https://github.com/toph-allen
https://github.com/AlvesKS
https://github.com/geanders
https://github.com/aappling-usgs
https://github.com/lidefi87
https://github.com/lidefi87
https://github.com/arendsee
https://github.com/statsmaths
https://github.com/alstat
https://github.com/daattali
https://github.com/batpigandme
https://github.com/suzanbaert
https://github.com/suzanbaert
https://github.com/coatless
https://github.com/vbaliga
https://github.com/dwbapst
https://github.com/bjoelle
https://github.com/abarner
https://github.com/calebasaraba
https://github.com/calebasaraba
https://github.com/johnbaums
https://github.com/fawda123
https://github.com/gmbecker
https://github.com/jsonbecker
https://github.com/DomBennett
https://github.com/kbenoit
https://github.com/kbenoit
https://github.com/berdaniera
https://github.com/fboehm
https://github.com/cboettig
https://github.com/WillOnGit
https://github.com/bpbond
https://github.com/asbonnetlebrun
https://github.com/asbonnetlebrun
https://github.com/alisonboyer
https://github.com/aebratt
https://github.com/briatte
https://github.com/eebrown
https://github.com/brunj7
https://github.com/jennybc
https://github.com/jennybc
https://github.com/jemus42
https://github.com/lbusett
https://github.com/mpaulacaldas
https://github.com/quishqa
https://github.com/brad-cannell
https://github.com/jcavieresg
https://github.com/KevCaz
https://github.com/sckott
https://github.com/chamberlinc
https://github.com/j23414
https://github.com/pchausse
https://github.com/pchausse
https://github.com/cimentadaj
https://github.com/nicholasjclark
https://github.com/chasemc
https://github.com/jonclayden
https://github.com/DenaJGibbon
https://github.com/wcornwell
https://github.com/wcornwell
https://github.com/thisisnic
https://github.com/ercrema
https://github.com/VeruGHub
https://github.com/czeildi
https://github.com/taddallas
https://github.com/kauedesousa
https://github.com/cderv
https://github.com/aedobbyn
https://github.com/jasdumas
https://github.com/RemkoDuursma
https://github.com/MarkEdmondson1234
https://github.com/pegeler
https://github.com/eveskew
https://github.com/harryeslick
https://github.com/salvafern
https://github.com/s3alfisc
https://github.com/kimnewzealand
https://github.com/rmflight
https://github.com/rmflight
https://github.com/sfoks
https://github.com/sformel-usgs
https://github.com/zachary-foster
https://github.com/aurielfournier
https://github.com/kaijagahm
https://github.com/kaijagahm
https://github.com/gzach93
https://github.com/carlganz
https://github.com/nacnudus
https://github.com/JanLauGe
https://github.com/sharlagelfand
https://github.com/monicagerber
https://github.com/monicagerber
https://github.com/dosgillespie
https://github.com/davidgohel
https://github.com/cagrigokcek
https://github.com/guadag12
https://github.com/HaoZeke
https://github.com/laurajanegraham
https://github.com/softloud
https://github.com/Rekyt
https://github.com/cgries
https://github.com/bisaloo
https://github.com/ernestguevarra
https://github.com/kylehamilton
https://github.com/kylehamilton
https://github.com/ivanhanigan
https://github.com/jeffreyhanson
https://github.com/raynamharris
https://github.com/emhart
https://github.com/nujcharee
https://github.com/expectopatronum
https://github.com/expectopatronum
https://github.com/stephhazlitt
https://github.com/andrewheiss
https://github.com/maxheld83
https://github.com/arhepworth
https://github.com/chucheria
https://github.com/jimhester
https://github.com/jimhester
https://github.com/PeteHaitch
https://github.com/rmhogervorst
https://github.com/khondula
https://github.com/allisonhorst
https://github.com/seaaan
https://github.com/jameshunterbr
https://github.com/bhive01
https://github.com/ginberg
https://github.com/chjackson
https://github.com/njahn82
https://github.com/tdjames1
https://github.com/vjimenez9
https://github.com/vjimenez9
https://github.com/mikejohnson51
https://github.com/wjones127
https://github.com/mbjoseph
https://github.com/meghapsimatrix
https://github.com/kjuraic
https://github.com/sokal1456
https://github.com/zkamvar
https://github.com/kaneplusplus
https://github.com/andeek
https://github.com/Tinula-kariyawasam
https://github.com/UniversalTourist
https://github.com/jonkeane
https://github.com/christopherkenny
https://github.com/Ironholds
https://github.com/markean
https://github.com/kingaa
https://github.com/mikoontz
https://github.com/bmkramer
https://github.com/wlandau
https://github.com/sammlapp
https://github.com/ledell
https://github.com/leeper
https://github.com/levisc8
https://github.com/lisalevinson
https://github.com/stephlocke
https://github.com/marionlouveaux
https://github.com/robinlovelace
https://github.com/jules32
https://github.com/timcdlucas
https://github.com/Kattuvan
https://github.com/aammd
https://github.com/aammd
https://github.com/kierisi
https://github.com/mikemahoney218
https://github.com/tjmahr
https://github.com/orchid00
https://github.com/zambujo
https://github.com/benmarwick
https://github.com/clairemas0n
https://github.com/milesmcbain
https://github.com/LucyMcGowan
https://github.com/AmeliaMN
https://github.com/eamcvey
https://github.com/eamcvey
https://github.com/amoeba
https://github.com/nolwenn
https://github.com/fmichonneau
https://github.com/leocadio-miguel
https://github.com/helenmiller16
https://github.com/beatrizmilz
https://github.com/beatrizmilz
https://github.com/jminnier
https://github.com/pmnatural
https://github.com/nmonhait
https://github.com/kelshmo
https://github.com/Paula-Moraga
https://github.com/nmorandeira
https://github.com/rossmounce
https://github.com/drmowinckels
https://github.com/lmullen
https://github.com/mmulvahill
https://github.com/mvickm
https://github.com/mdneuzerling
https://github.com/deniederhut
https://github.com/joelnitta
https://github.com/rorynolan
https://github.com/karinorman
https://github.com/karinorman
https://github.com/Nowosad
https://github.com/nunesmatt
https://github.com/nuest
https://github.com/obrl-soil
https://github.com/jmobrien
https://github.com/poldham
https://github.com/limnoliver
https://github.com/DanOlner
https://github.com/jeroen
https://github.com/luismurao
https://github.com/ottlngr
https://github.com/mpadge
https://github.com/marinapapa
https://github.com/marinapapa
https://github.com/edzer
https://github.com/thomasp85
https://github.com/ajpelu
https://github.com/msperlin
https://github.com/msperlin

Perlin · Rafael Pilliard‑Hellwig · Rodrigo Neto Pires · Lindsay Platt · Nicholas Potter · Joanne Potts ·
Josep Pueyo‑Ros · Etienne Racine · Manuel Ramon · Nistara Randhawa · David Ranzolin · Quentin
Read · Neal Richardson · tyler rinker · Emily Robinson · David Robinson · Alec Robitaille · Francisco
Rodriguez‑Sanchez · Sam Rogers · Julia Romanowska · Xavier Rotllan‑Puig · Bob Rudis · Edgar Ruiz
· Kent Russel · Michael Sachs · Sheila Saia · Alicia Schep · Klaus Schliep · Clemens Schmid · Patrick
Schratz · Collin Schwantes · Marco Sciaini · Heidi Seibold · Julia Silge · Margaret Siple · Peter Slaugh‑
ter · Mike Smith · Tuija Sonkkila · Øystein Sørensen · Jemma Stachelek · Christine Stawitz · Irene
Steves · Kelly Street · Matt Strimas‑Mackey · Alex Stringer · Michael Sumner · Chung‑Kai Sun · Sarah
Supp · Emi Tanaka · Jason Taylor · Filipe Teixeira · Andy Teucher · Jennifer Thompson · Joe Thorley ·
Nicholas Tierney · Tiffany Timbers · Tan Tran · Tim Trice · Utku Turk · Kyle Ueyama · Ted Underwood
· Adithi R. Upadhya · Kevin Ushey · Josef Uyeda · Frans van Dunné · Mauricio Vargas · Remi Vergnon ·
JakeWagner · BenWard · Elin Waring · Rachel Warnock · LeahWasser · David Watkins · Lukas Weber
· Marc Weber · Karissa Whiting · StefanWidgren · AnnaWilloughby · Saras Windecker · LukeWinslow
· DavidWinter · SebastianWójcik · WitoldWolski · KaraWoo · Marvin N.Wright · JacobWujciak‑Jens ·
BrunaWundervald · Lauren Yamane · Emily Zabor · Taras Zakharko · Hao Zhu · Chava Zibman · Nau‑
paka Zimmerman · Jake Zwart · santikka · Bri · Flury · Vincent · eholmes · Pachá · Rich · Claudia ·
Jasmine · Zack · Lluís · becarioprecario · gaurav

We are also grateful to the following individuals who have served as guest editors.

Ana Laura Diedrichs · Francisco Rodriguez‑Sanchez · Hao Zhu

45

https://github.com/msperlin
https://github.com/rtaph
https://github.com/bozaah
https://github.com/lindsayplatt
https://github.com/potterzot
https://github.com/TheAnalyticalEdge
https://github.com/jospueyo
https://github.com/etiennebr
https://github.com/manuramon
https://github.com/nistara
https://github.com/daranzolin
https://github.com/qdread
https://github.com/qdread
https://github.com/nealrichardson
https://github.com/trinker
https://github.com/robinsones
https://github.com/dgrtwo
https://github.com/robitalec
https://github.com/Pakillo
https://github.com/Pakillo
https://github.com/rogerssam
https://github.com/jromanowska
https://github.com/xavi-rp
https://github.com/hrbrmstr
https://github.com/edgararuiz
https://github.com/timelyportfolio
https://github.com/sachsmc
https://github.com/sheilasaia
https://github.com/AliciaSchep
https://github.com/KlausVigo
https://github.com/nevrome
https://github.com/pat-s
https://github.com/pat-s
https://github.com/collinschwantes
https://github.com/marcosci
https://github.com/HeidiSeibold
https://github.com/juliasilge
https://github.com/mcsiple
https://github.com/gothub
https://github.com/gothub
https://github.com/grimbough
https://github.com/tts
https://github.com/osorensen
https://github.com/jsta
https://github.com/ChristineStawitz-NOAA
https://github.com/isteves
https://github.com/isteves
https://github.com/kstreet13
https://github.com/mstrimas
https://github.com/awstringer1
https://github.com/mdsumner
https://github.com/cksun-usc
https://github.com/sarahsupp
https://github.com/sarahsupp
https://github.com/emitanaka
https://github.com/jmt2080ad
https://github.com/FilipeamTeixeira
https://github.com/ateucher
https://github.com/jenniferthompson
https://github.com/joethorley
https://github.com/njtierney
https://github.com/ttimbers
https://github.com/vinhtantran
https://github.com/timtrice
https://github.com/utkuturk
https://github.com/khueyama
https://github.com/tedunderwood
https://github.com/adithirgis
https://github.com/kevinushey
https://github.com/uyedaj
https://github.com/FvD
https://github.com/pachamaltese
https://github.com/remsamp
https://github.com/jacobpwagner
https://github.com/BenJWard
https://github.com/elinw
https://github.com/rachelwarnock
https://github.com/lwasser
https://github.com/wdwatkins
https://github.com/lmweber
https://github.com/mhweber
https://github.com/karissawhiting
https://github.com/stewid
https://github.com/arw36
https://github.com/smwindecker
https://github.com/lawinslow
https://github.com/dwinter
https://github.com/SebastianWojcik86
https://github.com/wolski
https://github.com/karawoo
https://github.com/mnwright
https://github.com/assignUser
https://github.com/brunaw
https://github.com/layamane
https://github.com/zabore
https://github.com/tzakharko
https://github.com/haozhu233
https://github.com/czibman
https://github.com/naupaka
https://github.com/naupaka
https://github.com/jzwart
https://github.com/santikka
https://github.com/BriannaLind
https://github.com/romanflury
https://github.com/vincentvanhees
https://github.com/eholmes
https://github.com/pachadotdev
https://github.com/richfitz
https://github.com/cvitolo
https://github.com/laijasmine
https://github.com/zackarno
https://github.com/llrs
https://github.com/becarioprecario
https://github.com/soodoku
https://github.com/anadiedrichs
https://github.com/Pakillo
https://github.com/haozhu233

5 Software Peer Review policies

This chapter contains the policies of rOpenSci Software Peer Review.

In particular, you’ll read our policies regarding software peer review itself: the review submis‑
sion process including our conflict of interest policies, and the aims and scope of the Software
Peer Review system. This chapter also features our policies regarding package ownership and
maintenance.

Last but not least, you’ll find the code of conduct of rOpenSci Software Peer Review.

5.1 Review process

• For a package tobe considered for the rOpenSci suite, package authorsmust initiate a request
on the ropensci/software‑review repository.

• Packages are reviewed for quality, fit, documentation, clarity and the review process is quite
similar toamanuscript review (seeourpackagingguideand reviewingguide formoredetails).
Unlike a manuscript review, this process will be an ongoing conversation.

• Once all major issues and questions, and those addressable with reasonable effort, are re‑
solved, the editor assigned to a package will make a decision (accept, hold, or reject). Rejec‑
tions are usually done early (before the review process begins, see the aims and scope sec‑
tion), but in rare cases a package may also be not onboarded after review & revision. It is ul‑
timately editor’s decision on whether or not to reject the package based on how the reviews
are addressed.

• Communication between authors, reviewers and editors will first and foremost take place on
GitHub, althoughyoucanchoose tocontact theeditorbyemail orSlack for some issues. When
submitting apackage, pleasemake sure yourGitHubnotification settingsmake it unlikely you
will miss a comment.

• The author can choose to have their submissionput onhold (editor applies the holding label).
The holding statuswill be revisited every 3months, and after one year the issuewill be closed.

• If the author hasn’t requested a holding label, but is simply not responding, we should close
the issue within one month after the last contact intent. This intent will include a comment
tagging the author, but also an email using the email address listed in theDESCRIPTIONof the
packagewhich is one of the rare caseswhere the editorwill try to contact the author by email.

46

https://github.com/ropensci/software-review

• If a submission is closed and the author wishes to re‑submit, they’ll have to start a new sub‑
mission. If the package is still in scope, the author will have to respond to the initial reviews
before the editor starts looking for new reviewers.

5.1.1 Publishing in other Venues

• We strongly suggest submitting your package for review before publishing on CRAN or sub‑
mitting a software paper describing the package to a journal. Review feedback may result in
major improvements andupdates to yourpackage, including renamingandbreaking changes
to functions. We do not consider previous publication on CRAN or in other venues sufficient
reason to not adopt reviewer or editor recommendations.

• Do not submit your package for review while it or an associated manuscript is also under re‑
view at another venue, as this may result on conflicting requests for changes.

5.1.2 Conflict of interest for reviewers/editors

Following criteria are meant to be a guide for what constitutes a conflict of interest for an editor or
reviewer. The potential editor or reviewer has a conflict of interest if:

• The potential reviewer/editor are from the same institution or institutional component (e.g.,
department) as any author with a major role.

• The potential reviewer/editor has been a collaborator or has had other professional relation‑
ships with at least one person on the package who has a major role within in the past three
year.

• The potential reviewer/editor serves, or has served, as amember of the advisory board for the
project under review.

• Thepotential reviewer/editorwould receive adirect or indirect financial benefit if thepackage
were accepted.

• The potential reviewer/editor has significantly contributed to a competitor project.
• There is also a lifetime COI for the family members, business partners, and thesis stu‑
dent/advisor or mentor.

In the case where none of the associate editors can serve as editor, an external guest editor will be
recruited.

5.2 Aims and Scope

rOpenSci aims to support packages that enable reproducible research and managing the data life‑
cycle for scientists. Packages submitted to rOpenSci should fit into one or more of the categories
outlined either below. Statistical softwaremay also be submitted for peer review, forwhichwehave

47

a separate set of guidelines and standards. The categories below are for general, and not statistical,
software, while the remainder of this chapter applies to both kinds of software. If you are unsure
whether your package fits into one of the general or statistical categories, please open an issue as a
pre‑submission inquiry (Examples).

As this is a living document, these categories may change through time and not all previously on‑
boarded packageswould be in‑scope today. For instance, data visualization packages are no longer
in‑scope. While we strive to be consistent, we evaluate packages on a case‑by‑case basis and may
make exceptions.

Note that not all rOpenSci projects and packages are in‑scope or go through peer review. Projects
developed by staff or at conferences may be experimental, exploratory, address core infrastructure
priorities and thus not fall into these categories. Look for the peer‑review badge ‑ see below ‑ to
identify peer‑reviewed packages in the rOpenSci repository.

Figure 5.1: example of a green peer‑reviewed badge

5.2.1 Package categories

• data retrieval: Packages for accessing and downloading data from online sources with sci‑
entific applications. Our definition of scientific applications is broad, including data storage
services, journals, and other remote servers, as many data sources may be of interest to re‑
searchers. However, retrieval packages should be focused on data sources / topics, rather
than services. For example a general client for Amazon Web Services data storage would not
be in‑scope. (Examples: rotl, gutenbergr)

• data extraction: Packages that aid in retrieving data from unstructured sources such as text,
images and PDFs, as well as parsing scientific data types and outputs from scientific equip‑
ment. Statistical/ML libraries for modeling or prediction are typically not included in this cat‑
egory, nor are code parsers. Trained models that act as utilities (e.g., for optical character
recognition), may qualify. (Examples: tabulizer for extracting tables from PDF documents,
genbankr for parsing files from GenBank, treeio for phylogentic reading in phylogentic tree
files, lightr for parsing files from spectroscopic instruments))

• datamunging: Packages for processing data from formats above. This area does not include
broad data manipulations tools such as reshape2 or tidyr, or tools for extracting data from
R code itself. Rather, it focuses on tools for handling data in specific scientific formats gen‑
erated from scientific workflows or exported from scientific instruments. (Examples: plateR
for reading in data structured as plate maps for scientific instruments, or phonfieldwork for
processing annotated audio files for phonics research)

48

https://stats-devguide.ropensci.org/index.html
https://github.com/ropensci/software-review/issues?q=is%3Aissue+label%3A0%2Fpresubmission
https://ropensci.org/about/#team
https://github.com/ropensci/software-review/issues/17
https://github.com/ropensci/software-review/issues/41
https://github.com/ropensci/software-review/issues/42
https://github.com/ropensci/software-review/issues/47
https://github.com/ropensci/software-review/issues/179
https://github.com/ropensci/software-review/issues/267
https://github.com/ropensci/software-review/issues/60
https://github.com/ropensci/software-review/issues/385

• datadeposition: Packages that support deposition of data into research repositories, includ‑
ing data formatting andmetadata generation. (Example: EML)

• data validation and testing: Tools that enable automated validation and checking of data
quality and completeness as part of scientific workflows. (Example: assertr)

• workflow automation: Tools that automate and link together workflows, such as build sys‑
tems and tools to manage continuous integration. Does not include general tools for liter‑
ate programming. (e.g., R markdown extensions not under the previous topics). (Example:
drake)

• version control: Tools that facilitate the use of version control in scientific workflows. Note
that this does not include all tools that interact with online version control services (e.g.,
GitHub), unless they fit into another category. (Example: git2rdata)

• citationmanagement and bibliometrics: Tools that facilitatemanaging references, such as
for writing manuscripts, creating CVs or otherwise attributing scientific contributions, or ac‑
cessing, manipulating or otherwise working with bibliometric data. (Example: RefManageR)

• scientific software wrappers: Packages that wrap non‑R utility programs used for scientific
research. These programs must be specific to research fields, not general computing utili‑
ties. Wrappersmust be non‑trivial, in that theremust be significant added value above simple
system() calls or bindings, whether in parsing inputs and outputs, data handling, etc. Im‑
proved installation process, or extension of compatibility to more platforms, may constitute
added value if installation is complex. This does not include wrappers of other R packages or
C/C++ libraries that can be included in R packages. It also does not include packages that are
clients for web APIs, which must fall into one of the other categories. We strongly encourage
wrappingopen‑sourceandopen‑licensedutilities ‑ exceptionswill beevaluatedcase‑by‑case,
considering whether open‑source options exist. (Examples: babette, nlrx)

• field and laboratory reproducibility tools: Packages that improve reproducibility of real‑
world workflows through standardization and automation of field and lab protocols, such
as sample tracking and tagging, form and data sheet generation, interfacing with laboratory
equipment or information systems, and executing experimental designs. (Example: baR‑
codeR)

• database software bindings: Bindings and wrappers for generic database APIs (Example:
rrlite)

In addition, we have some specialty topicswith a slightly broader scope.

• geospatial data: We accept packages focused on accessing geospatial data, manipulating
geospatial data, and converting between geospatial data formats. (Examples: osmplotr, ti‑
dync).

49

https://github.com/ropensci/software-review/issues/80
https://github.com/ropensci/software-review/issues/23
https://github.com/ropensci/software-review/issues/156
https://github.com/ropensci/software-review/issues/263
https://github.com/ropensci/software-review/issues/119
https://github.com/ropensci/software-review/issues/208
https://github.com/ropensci/software-review/issues/262
https://github.com/ropensci/software-review/issues/336
https://github.com/ropensci/software-review/issues/336
https://github.com/ropensci/software-review/issues/6
https://github.com/ropensci/software-review/issues/27
https://github.com/ropensci/software-review/issues/174
https://github.com/ropensci/software-review/issues/174

• translation: As part of ourwork inmultilingual publishing, we have a special interest in pack‑
ages that facilitate the translation and publication of scientific and programming resources
intomultiple (human) languages so they are accessible to larger andmore diverse audiences.
These could include interfaces to automated translation programs, frameworks formanaging
documentation inmultiple languages, or programsaccessing specialized linguistic resources.
This is a new and experimental scope, so please open a pre‑submission inquiry if you are in‑
terested in submitting a package in this category.

5.2.2 Other scope considerations

Packages should be general in the sense that they should solve a problem as broadly as possible
whilemaintaining a coherent user interface and code base. For instance, if several data sources use
an identical API, we prefer a package that provides access to all the data sources, rather than just
one.

Packages that include interactive tools to facilitate researcher workflows (e.g., shiny apps) must
have a mechanism to make the interactive workflow reproducible, such as code generation or a
scriptable API.

For packages that are not in the scope of rOpenSci, we encourage submitting them to CRAN, Bio‑
Conductor, as well as other R package development initiatives (e.g., cloudyr), and software journals
such as JOSS, JSS, or the R journal, depending on the current scopes of those journals.

Note that the packages developed internally by rOpenSci, through our events or through collabo‑
rations are not all in‑scope for our Software Peer Review process.

5.2.3 Package overlap

rOpenSci encourages competition among packages, forking and re‑implementation as they
improve options of users overall. However, as we want packages in the rOpenSci suite to be our
top recommendations for the tasks they perform, we aim to avoid duplication of functionality of
existing R packages in any repo without significant improvements. An R package that replicates
the functionality of an existing R packagemay be considered for inclusion in the rOpenSci suite if it
significantly improves on alternatives in any repository (RO, CRAN, BioC) by being:

• More open in licensing or development practices
• Broader in functionality (e.g., providing access to more data sets, providing a greater suite of
functions), but not only by duplicating additional packages

• Better in usability and performance
• Actively maintained while alternatives are poorly or no longer actively maintained

50

https://ropensci.org/multilingual-publishing/
https://github.com/ropensci/software-review/issues/new/choose
https://cloudyr.github.io/

These factors should be considered as a whole to determine if the package is a significant improve‑
ment. A new package would notmeet this standard only by following our package guidelines while
others do not, unless this leads to a significant difference in the areas above.

We recommend that packages highlight differences fromand improvements over overlappingpack‑
ages in their README and/or vignettes.

We encourage developers whose packages are not accepted due to overlap to still consider submit‑
tal to other repositories or journals.

5.3 Package ownership andmaintenance

5.3.1 Role of the rOpenSci team

Authors of contributed packages essentially maintain the same ownership they had prior to their
package joining the rOpenSci suite. Package authors will continue to maintain and develop their
software after acceptance into rOpenSci. Unless explicitly added as collaborators, the rOpenSci
team will not interfere much with day to day operations. However, this team may intervene with
critical bug fixes, or address urgent issues if package authors do not respond in a timely manner
(see the section about maintainer responsiveness).

5.3.2 Maintainer responsiveness

If package maintainers do not respond in a timely manner to requests for package fixes from CRAN
or from us, we will remind the maintainer a number of times, but after 3 months (or shorter time
frame, depending on how critical the fix is) we will make the changes ourselves.

The above is a bit vague, so the following are a few areas of consideration.

• Examples where we’d want to move quickly:

– Package foo is imported by one ormore packages on CRAN, and foo is broken, and thus
would break its reverse dependencies.

– Package bar may not have reverse dependencies on CRAN, but is widely used, thus
quickly fixing problems is of greater importance.

• Examples where we can wait longer:

– Package hello is not on CRAN, or on CRAN, but has no reverse dependencies.
– Package world needs some fixes. Themaintainer has responded but is simply very busy
with a new job, or other reason, and will attend to soon.

51

Weurgepackagemaintainers tomakesure theyare receivingGitHubnotifications, aswell asmaking
sure emails from rOpenSci staff and CRAN maintainers are not going to their spam box. Authors
of onboarded packages will be invited to the rOpenSci Slack to chat with the rOpenSci team and
the greater rOpenSci community. Anyone can also discuss with the rOpenSci community on the
rOpenSci discussion forum.

Should authors abandon themaintenance of an actively used package in our suite, wewill consider
petitioning CRAN to transfer packagemaintainer status to rOpenSci.

5.3.3 Quality commitment

rOpenSci strives to develop and promote high quality research software. To ensure that your soft‑
ware meets our criteria, we review all of our submissions as part of the Software Peer Review pro‑
cess, and even after acceptance will continue to step in with improvements and bug fixes.

Despite our best efforts to support contributed software, errors are the responsibility of individual
maintainers. Buggy, unmaintained software may be removed from our suite at any time.

5.3.4 Package removal

In the unlikely scenario that a contributor of a package requests removal of their package from the
suite, we retain the right to maintain a version of the package in our suite for archival purposes.

5.4 Ethics, Data Privacy and Human Subjects Research

rOpenSci packages and other tools are used for a variety of purposes, but our focus is on tools for
research. Weexpect that toolswill enable ethical useby researchpractitioners, whoareobligated to
adhere to ethical codes such Declaration of Helsinki and The Belmont Report. Researchers bear re‑
sponsibility for their use of software, but software developers must consider the ethical use of their
products, and developers themselves adhere to ethical codes for computer professionals such as
those expressed by IEEE and ACM. rOpenSci contributors often play both the role of both researcher
and developer.

We ask that software developers place themselves in researchers’ role and consider the require‑
ments of an ethical workflow using authors’ software. Given the variation and degree of flux of
ethical approaches for Internet‑based analyses, judgement calls rather than recipes are required.
The Ethical Guidelines of The Association of Internet Researchers provides a robust framework and
we encourage authors, editors, and reviewers to use this in evaluating their work. In general, adher‑
ence to legal or regulatoryminimum requirementsmay not be sufficient, though these (e.g., GDPR),
may be relevant. Package authors should direct users to relevant resources for the ethical use of the
software.

52

https://discuss.ropensci.org/
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html
https://www.computer.org/education/code-of-ethics
https://ethics.acm.org/
https://aoir.org/ethics/

Some packages, due to the nature of data they handle, may be determined by editors to require
enhanced scrutiny. For these, editors may require additional (or reduced) functionality, and robust
documentation, defaults, and warnings to direct users to relevant ethical practices. The following
topics maymerit enhanced scrutiny:

• Vulnerable populations: Authors of packages and workflows that deal with information re‑
lated to vulnerable populations bear responsibility to protect them from likely harms.

• Personally identifiable or sensitive data: The release of personally identifiable or sensitive
data is potentially harmful. This includes “reasonably re‑identifiable” data ‑ which a moti‑
vated individual could trace back to the owner or creator even if the data are anonymized.
This includes both cases where identifiers (e.g., name, date of birth) are available as part of
data, and also if unique pseudonyms/screen names are linked with full‑text posts, through
which one can link back individuals through cross‑reference with other data sets.

While the best response to ethical concernswill be context‑specific, these general guidelines should
be followed by packages where the challenges above arise:

• Packages should adhere todata source’s termsof use, as expressed inwebsite TermsandCon‑
ditions, “robots.txt” files, privacy policies, and other relevant restrictions, and link to them
prominently in package documentation. Packages should provide or document functional‑
ity to adhere to such restrictions (e.g., scrape from only allowed endpoints, use appropriate
rate limiting in code, examples, or vignettes). Note that while Terms and Conditions, Privacy
Policies, etc., may not provide sufficient bounds on ethical usage, they can provide an outer
bound.

• Akey tool in addressing the risksposed in studyingvulnerablepopulationsorusingpersonally
identifiable data is informed consent. Package authors should support users’ acquisition of
informed consent when relevant. This may include providing links to data source’s preferred
method of acquiring consent, contact information of data providers (e.g. forummoderators),
documentation of informed consent protocols, or getting pre‑approval for general uses of a
package.

Note that consent is not implicitly granted just because data are accessible. Accessible data
are not necessarily public, as different persons and contexts have different normative expec‑
tations of privacy (see work by Social Data Lab).

• Packages accessing personally identifiable information should take special care to follow [se‑
curity best practices][Package Development Security Best Practices] (e.g., exclusive use of se‑
cure internet protocols, strongmechanisms for storing credentials, etc.).

• Packages that access or handle personally identifiable or sensitive data should enable, docu‑
ment, and demonstrate workflows for de‑identification, secure storage, other best practices
to minimize risk of harm.

53

https://docs.ropensci.org/robotstxt/
http://socialdatalab.net/ethics-resources

As standards for data privacy and research continue to evolve, we welcome input from authors on
considerations specific to their software and supplemental documentation such as approval from
university ethics review boards. These may be attached to issue threads of package submissions
or pre‑submission inquiries, or conveyed directly to editors if needed. General suggestions may be
filed as issues in this book’s repository.

5.4.1 Resources

The following resources may be helpful for researchers, package authors, editors and reviewers in
addressing ethical questions related to privacy and research software.

• The Declaration of Helsinki and The Belmont Report provide fundamental principles for ethi‑
cal practice by researchers.

• Several organizations provide guidance on how to translate these principles into the context
of internet research. These include the Ethical Guidelines of The Association of Internet Re‑
searchers, theNESHGuide to InternetResearchEthics, andBPS’EthicsGuidelines for Internet‑
Mediated Research. Anabo et al (2019) provide a helpful overview of these.

• The Social Media Lab provides a high‑level overview with data on normative expectations of
privacy and use on social forums.

• Bechmann A., Kim J.Y. (2019) Big Data: A Focus on Social Media Research Dilem‑
mas. In: Iphofen R. (eds) Handbook of Research Ethics and Scientific Integrity. https:
//doi.org/10.1007/978‑3‑319‑76040‑7_18‑1

• Chu, K.‑H., Colditz, J., Sidani, J., Zimmer, M., & Primack, B. (2021). Re‑evaluating standards
of human subjects protection for sensitive health data in social media networks. Social Net‑
works, 67, 41–46. https://dx.doi.org/10.1016/j.socnet.2019.10.010

• Lomborg, S., & Bechmann, A. (2014). Using APIs for Data Collection on Social Media. The
Information Society, 30(4), 256–265. https://dx.doi.org/10.1080/01972243.2014.915276

• Flick, C. (2016). Informed consent and the Facebook emotionalmanipulation study. Research
Ethics, 12(1), 14–28. https://doi.org/10.1177/1747016115599568

• Sugiura, L., Wiles, R., & Pope, C. (2017). Ethical challenges in online research: Public/private
perceptions. Research Ethics, 13(3–4), 184–199. https://doi.org/10.1177/1747016116650720

• Taylor, J., & Pagliari, C. (2018). Mining social media data: How are research sponsors and
researchers addressing the ethical challenges? Research Ethics, 14(2), 1–39. https://doi.org/
10.1177/1747016117738559

• Zimmer, M. (2010). “But the data is already public”: on the ethics of research in Facebook.
Ethics and Information Technology, 12(4), 313–325. https://dx.doi.org/10.1007/s10676‑010‑
9227‑5

54

https://github.com/ropensci/dev_guide/issues
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/index.html
https://aoir.org/ethics/
https://aoir.org/ethics/
https://www.forskningsetikk.no/en/guidelines/social-sciences-humanities-law-and-theology/a-guide-to-internet-research-ethics/
https://www.bps.org.uk/news-and-policy/ethics-guidelines-internet-mediated-research-2017
https://www.bps.org.uk/news-and-policy/ethics-guidelines-internet-mediated-research-2017
https://doi.org/10.1007/s10676-018-9495-z
http://socialdatalab.net/ethics-resources
https://doi.org/10.1007/978-3-319-76040-7_18-1
https://doi.org/10.1007/978-3-319-76040-7_18-1
https://dx.doi.org/10.1016/j.socnet.2019.10.010
https://dx.doi.org/10.1080/01972243.2014.915276
https://doi.org/10.1177/1747016115599568
https://doi.org/10.1177/1747016116650720
https://doi.org/10.1177/1747016117738559
https://doi.org/10.1177/1747016117738559
https://dx.doi.org/10.1007/s10676-010-9227-5
https://dx.doi.org/10.1007/s10676-010-9227-5

5.5 Code of Conduct

rOpenSci’s community is our best asset. Whether you’re a regular contributor or a newcomer, we
care about making this a safe place for you and we’ve got your back. We have a Code of Conduct
that applies to all people participating in the rOpenSci community, including rOpenSci staff and
leadership and to all modes of interaction online or in person. The Code of Conduct is maintained
on the rOpenSci website.

55

https://ropensci.org/code-of-conduct/

6 Guide for Authors

This concise guide presents the software peer review process for you as a package author.

6.1 Planning a Submission (or a Pre‑Submission Enquiry)

• Do you expect to maintain your package for at least 2 years, or to be able to identify a new
maintainer?

• Consult our policies see if your package meets our criteria for fitting into our suite and does
not overlap with other packages.

– If you are unsure whether a package meets our criteria, feel free to open an issue as a
pre‑submission inquiry to ask if the package is appropriate.

– Example response regarding overlap. Also consider adding some points about similar
packages to your package documentation.

• Please consider the best time in your package’s development to submit. Your package should
be sufficiently mature so that reviewers are able to review all essential aspects, but keep in
mind that reviewmay result in major changes.

– We strongly suggest submitting your package for review before publishing on CRAN or
submitting a software paper describing the package to a journal. Review feedback may
result in major improvements and updates to your package, including renaming and
breaking changes to functions.

– Donot submit your package for reviewwhile it or an associatedmanuscript is also under
review at another venue, as this may result in conflicting requests for changes.

• Please also consider the time and effort needed to respond to reviews: think about your avail‑
ability or that of your collaborators in the next weeks and months following a submission.
Note that reviewers are volunteers, and we ask that you respect their time and effort by re‑
sponding in a timely and respectful manner.

• If you use repostatus.org badges (which we recommend), submit when you’re ready to get an
Active instead ofWIP badge. Similarly, if you use lifecycle badges, submission should happen
when the package is Stable.

• For any submission or pre‑submission inquiry the README of your package should provide
enough information about your package (goals, usage, similar packages) for the editors to
assess its scope without having to install the package. Even better, set up a pkgdownwebsite
for allowing more detailed assessment of functionality online.

56

https://github.com/ropensci/software-review/issues/199#issuecomment-375358362
https://www.repostatus.org/
https://www.tidyverse.org/lifecycle/

– At the submission stage, all major functions should be stable enough to be fully docu‑
mented and tested; the README should make a strong case for the package.

– Your README file should strive to explain your package’s functionality and aims, assum‑
ing readers have little to no domain knowledge. All technical tems, including references
to other software, should be clarified.

• Your package will continue to evolve after review, the chapter on Package evolution provides
guidance about the topic.

6.2 Preparing for Submission

• Read and follow our packaging style guide, reviewer’s guide to ensure your package meets
our style and quality criteria.

• Feel free to ask any questions about the process, or your specific package, in our Discussion
Forum.

• All submissions are automatically checkedby our pkgcheck system to ensure packages follow
our guidelines. All authors are expected to have run the main pkgcheck function locally to
confirm that the package is ready to be submitted. Alternatively, an even easier way to ensure
a package is ready for submission is to use the pkgcheck GitHub Action to run pkgcheck as a
GitHub Action, as described in our blog post.

• If your package requires unusual system dependencies (see Packaging Guide) for our GitHub
Action to pass, please submit a pull request adding them to our base Dockerfile.

• If there are any aspects of pkgcheck which your package is unable to pass, please explain
reasons in your submission template.

• If you feel your package is in scope for the Journal of Open‑Source Software (JOSS), do not
submit it to JOSSconsiderationuntil after the rOpenSci reviewprocess is over: if yourpackage
is deemed in scope by JOSS editors, only the accompanying short paper would be reviewed,
(not the software that will have been extended reviewed by rOpenSci by that time). Not all
rOpenSci packages will meet the criteria for JOSS.

6.3 The Submission Process

• Software is submitted for reviewbyopening a new issue in the software review repository and
filling out the template.

• The template begins with a section which includes several HTML‑styled variables
(<!---variable--->). These are used by our ropensci-review-bot, and must be
left in place, with values filled between the indicated start and end points, like this:

<!---variable--->insert value here<!---end-variable>

57

https://discuss.ropensci.org
https://discuss.ropensci.org
https://docs.ropensci.org/pkgcheck/
https://docs.ropensci.org/pkgcheck/reference/pkgcheck.html
https://github.com/ropensci-review-tools/pkgcheck-action
https://ropensci.org/blog/2022/02/01/pkgcheck-action/
https://github.com/ropensci-review-tools/pkgcheck/blob/main/Dockerfile
https://joss.theoj.org/
https://github.com/ropensci/software-review/issues/new/choose

• Communication between authors, reviewers and editors will first and foremost take place on
GitHub so that the review thread can serve as a full record of the review. You may choose
to contact the editor by email or Slack if private consultation is needed (e.g., asking how to
respond to a reviewer question). Do not contact reviewers off‑thread without asking them in
the GitHub thread whether they agree to it.

• When submitting a package pleasemake sure your GitHub notification settingsmake it unlikely
you will miss a comment.

• Packages are automatically checked on submission by our pkgcheck system, which will con‑
firm whether or not a package is ready to be reviewed.

• Submitted packages can be hosted in the main/default branch, or any other non‑default
branch. In the latter case, it is encouraged, but not required, to submit the package via a
dedicated ropensci-software-review branch.

6.4 The Review Process

• An editor will review your submission within 5 business days and respond with next steps.
The editormay assign the package to reviewers, request that the package be updated tomeet
minimal criteria before review, or reject the package due to lack of fit or overlap.

• If your packagemeetsminimal criteria, the editorwill assign 1‑3 reviewers. Theywill be asked
to provide reviews as comments on your issue within 3 weeks.

• We ask that you respond to reviewers’ commentswithin 2weeks of the last‑submitted review,
but you may make updates to your package or respond at any time. Your response should
include a link to the updated NEWS.md of your package. Here is an author response exam‑
ple. We encourage ongoing conversations between authors and reviewers. See the reviewing
guide for more details.

• Any time package changes are likely to alter the results of the automated pkgcheck
checks, authors can request a re‑check with the command, @ropensci-review-bot check
package.

• Please notify us immediately if you are no longer able tomaintain your package or to respond
to reviews. Youwill thenbeexpected toeither retract a submission, or to findalternativepack‑
age maintainers. You can also discuss maintenance issues in the rOpenSci slack workspace.

• Once your package is approved, wewill provide further instructions about the transfer of your
repository to the rOpenSci repository.

Our code of conduct is mandatory for everyone involved in our review process.

58

https://docs.ropensci.org/pkgcheck
https://github.com/ropensci/software-review/issues/160#issuecomment-355043656
https://github.com/ropensci/software-review/issues/160#issuecomment-355043656
https://docs.ropensci.org/pkgcheck
https://docs.ropensci.org/pkgcheck

7 Guide for Reviewers

Thanks for accepting to review a package for rOpenSci! This chapter consists of our guidelines
to prepare, submit and follow up on your review.

You might contact the editor in charge of the submission for any question you might have
about the process or your review.

Please strive to complete your review within 3 weeks of accepting a review request. We will
aim to remind reviewers of upcoming and past due dates. Editors may assign additional or
alternate reviewers if a review is excessively late.

rOpenSci’s community is our best asset. We aim for reviews to be open, non‑adversarial,
and focused on improving software quality. Be respectful and kind! See our reviewers
guide and code of conduct for more.

If you use our standards/checklists etc. when reviewing software elsewhere, do tell the recipients
(e.g. journal editors, students, internal code review) that they came from rOpenSci, and tell us in
our public forum, or privately by email.

7.1 Volunteering as a reviewer

Thank you for your desire to participate in rOpenSci software peer‑review as a reviewer!

Please fill our volunteering form.

If you see a current submission that is particularly relevant to your interests please email
info@ropensci.org, including the name of the package, the URL to the submission issue and
the name of the assigned editor. However, keep in mind that reviewer invitations are kept at the
editor’s discretion, and the editormight well have already emailed people. Please do not volunteer
for all issues, and do not volunteer via GitHub interface.

For other ways to contribute, refer to rOpenSci contributing guide.

59

https://ropensci.org/code-of-conduct/
https://discuss.ropensci.org/c/usecases
https://ropensci.org/contact/
https://ropensci.org/software-reviewer
https://contributing.ropensci.org/

7.2 Preparing your review

Reviews should be based on the latest GitHub version on the default branch, unless otherwise in‑
dicated by package authors. All submissions trigger a detailed report on package structure and
functionality, generated by our pkgcheck package. If the package has changed substantially since
the last checks, you may request a re‑check with the command @ropensci-review-bot check
package. Note that when installing the package to review it, you should make sure you have all
dependencies available (for instance run pak::pak()).

7.2.1 General guidelines

To review a package, please begin by copying our review template (or our review template in Span‑
ish) and using it as a high‑level checklist. In addition to checking off the minimum criteria, we ask
that you provide general comments addressing the following:

• Does the code comply with general principles in the Mozilla reviewing guide?
• Does the package comply with the rOpenSci packaging guide?
• Are there improvements that could be made to the code style?
• Is there code duplication in the package that should be reduced?
• Are there user interface improvements that could be made?
• Are there performance improvements that could be made?
• Is the documentation (installation instructions/vignettes/examples/demos) clear and suffi‑
cient? Does it use the principle ofmultiple points of entry i.e. takes into account the fact that
any piece of documentationmay be the first encounter the user has with the package and/or
the tool/data it wraps?

• Were functions and arguments named to work together to form a common, logical program‑
ming API that is easy to read, and autocomplete?

• If you have your own relevant data/problem, work through it with the package. Youmay find
rough edges and use‑cases the author didn’t think about.

Please be respectful and kind to the authors in your reviews. Our code of conduct is mandatory
for everyone involved in our review process. We expect you to submit your review within 3 weeks,
depending on the deadline set by the editor. Please contact the editor directly or in the submission
thread to inform them about possible delays.

We encourage you to use automated tools to facilitate your reviewing. These include:

• Checking the initial package report generated by our @ropensci-review-bot.
• Checking the package’s logs on its continuous integration services (GitHub Actions, Codecov,
etc.)

• Runningdevtools::check() anddevtools::test()on thepackage to find any errors that
may bemissed on the author’s system.

60

https://docs.ropensci.org/pkgcheck/
https://mozillascience.github.io/codeReview/review.html

• Seeing whether tests’ skipping is justified (e.g. skip_on_cran() tests that do real API re‑
quests vs. skipping all tests on one operating system).

• If the package is not submitted via the default/main branch, remember to switch to the sub‑
mitted review branch before starting your review. In this case, youwill also have to search the
package locally, as GitHub search is limited to the default branch. Further, documentation
hosted on a pkgdown website is not necessarily up‑to‑date, and we recommend to inspect
the package’s documentation locally by running pkgdown::build_site().

Reviewers may also re‑generate package check results from @ropensci-review-bot at any time
by issuing the single comment in a review issue: @ropensci-review-bot check package.

7.2.2 Off‑thread interactions

If you interact with the package authors and talked about the review outside a review thread (in
chats, DMs, in‑person, issues in the project repository), pleasemake sure that your review captures
and/or links to elements from these conversations that are relevant to the process.

7.2.3 Experience from past reviewers

First‑time reviewers may find it helpful to read (about) some previous reviews. In general you can
find submission threads of onboarded packages here. Here are a few chosen examples of reviews
(note that your reviews do not need to be as long as these examples):

• rtika review 1 and review 2

• NLMR review 1 and review 2

• bowerbird pre‑review comment, review 1, review 2.

• rusda review (from before we had a review template)

You can read blog posts written by reviewers about their experiences via this link. In particular,
in this blog post by Mara Averick read about the “naive user” role a reviewer can take to provide
useful feedback even without being experts of the package’s topic or implementation, by asking
themselves “What did I think this thing would do? Does it do it? What are things that scare me off?”.
In another blog post Verena Haunschmid explains how she alternated between using the package
and checking its code.

Asbotha former reviewer andpackageauthor AdamSparkswrote this “[write] a goodcritiqueof the
package structure and best coding practices. If you know how to do something better, tell me. It’s
easy to miss documentation opportunities as a developer, as a reviewer, you have a different view.
You’re a user that can give feedback. What’s not clear in the package? How can it be made more
clear? If you’re using it for the first time, is it easy? Do you know another R package that maybe I

61

https://github.com/ropensci/software-review/issues?q=is%3Aissue+is%3Aclosed+label%3A6%2Fapproved
https://github.com/ropensci/software-review/issues/191#issuecomment-367166658
https://github.com/ropensci/software-review/issues/191#issuecomment-368254623
https://github.com/ropensci/software-review/issues/188#issuecomment-368042693
https://github.com/ropensci/software-review/issues/188#issuecomment-369310831
https://github.com/ropensci/software-review/issues/139#issuecomment-322713737
https://github.com/ropensci/software-review/issues/139#issuecomment-342380870
https://github.com/ropensci/software-review/issues/139#issuecomment-342724843
https://github.com/ropensci/software-review/issues/18#issuecomment-120445737
https://ropensci.org/tags/reviewer/
https://ropensci.org/blog/2017/08/22/first-package-review/
https://ropensci.org/blog/2017/09/08/first-review-experiences/
https://adamhsparks.netlify.app/
https://twitter.com/adamhsparks/status/898132036451303425

should be using? Or is there one I’m using that perhaps I shouldn’t be? If you can contribute to the
package, offer.”

7.2.4 Helper package for reviewers

If working in RStudio, you can streamline your review workflow by using the pkgreviewr package
created by associated editor Anna Krystalli. Say you accepted to review the refnet package, you’d
write

remotes::install_github("ropensci-org/pkgreviewr")
library(pkgreviewr)
pkgreview_create(pkg_repo = "embruna/refnet",

review_parent = "~/Documents/workflows/rOpenSci/reviews/")

and

• the GitHub repo of the refnet package will be cloned.
• a reviewprojectwill be created, containing a notebook for you to fill, and the review template.
• note that if the package is not submitted via the default/main branch, you need to switch to
the submitted branch before starting your review.

7.2.5 Feedback on the process

We encourage you to ask questions and provide feedback on the review process on our forum.

7.3 Submitting the Review

• When your review is complete, paste it as a comment into the package software‑review issue.
• Additional comments arewelcome in the same issue. Wehope that package reviewswill work
as an ongoing conversation with the authors as opposed to a single round of reviews typical
of academic manuscripts.

• You may also submit issues or pull requests directly to the package repo if you choose, but if
you do, please comment about them and link to them in the software‑review repo comment
thread so we have a centralized record and text of your review.

• Please include an estimate of howmany hours you spent on your review afterwards.

62

https://github.com/ropensci-org/pkgreviewr
https://discuss.ropensci.org

7.4 Review follow‑up

Authors should respond within 2 weeks with their changes to the package in response to your re‑
view. At this stage, we ask that you respond as to whether the changes sufficiently address any
issues raised in your review. We encourage ongoing discussion between package authors and re‑
viewers, and youmay ask editors to clarify issues in the review thread as well.

You’ll use the approval template.

63

8 Guide for Editors

Software Peer Review at rOpenSci is managed by a team of editors. We are piloting a system
of a rotating Editor‑in‑Chief (EiC).

This chapter presents the responsabilities of the Editor‑in‑Chief, of any editor in charge of a
submission, how to respond to an out‑of‑scope submission and how to manage a dev guide
release.

If you’re a guest editor, thanks for helping! Please contact the editorwho invited you to handle
a submission for any question youmight have.

Always assume participants in the software review system (fellow editors, submitters,
reviewers) are doing their best, and communicate gracefully accordingly, especially
when inquiring why a thing is delayed.

8.1 Editors’ responsibilities

• In addition to handling packages (about 4 a year), editors weigh in on group editorial deci‑
sions, such as whether a package is in‑scope, and determining updates to our policies. We
generally do this through Slack, which we expect editors to be able to check regularly.

• We also rotate Editor‑in‑Chief responsibilities (first‑pass scope decisions and assigning edi‑
tors) amongst the board about quarterly.

• You do not have to keep track of other submissions, but if you do notice an issue with a pack‑
age that is being handled by another editor, feel free to raise that issue directly with the other
editor, or post the concern to editors‑only channel on slack. Examples:

– You know of an overlapping package, that hasn’t beenmentioned in the process yet.
– You see a question towhich youhave an expert answer that hasn’t been given after a few
days (e.g. you know of a blog post tackling how to add images to package docs).

– Concerns related to e.g. the speedof the process should be tackled by the editor‑in‑chief
so that’s who you’d turn to for such questions.

64

8.2 Handling Editor’s Checklist

8.2.1 Upon submission:

• If you’re the EiC or the first editor to respond, assign an editor with a comment of
@ropensci-review-bot assign @username as editor. This will also add tag
1/editor-checks to the issue.

• For statistical submissions (identifiable as “Submission Type: Stats” in issue template), add
the “stats” label to the issue.

• Submission will automatically generate package check output from ropensci‑review‑bot
which should be examined for any outstanding issues (most exceptions will need to be jus‑
tified by the author in the particular context of their package.). If you want to re‑run checks
after any package change post a comment @ropensci-review-bot check package.

• The checking system is rebuilt at every Tuesday at 00:01 UTC, and can take a couple of hours.
If automatic checks fail around that time, wait a few hours and try again.

• After automatic checks are posted, use the editor template to guide initial checks and record
your response to the submission. You can also streamline your editor checks by using the
pkgreviewr package created by associate editor Anna Krystalli. Please strive to finish the
checks and start looking for reviewers within 5 working days.

• Check that template has been properly filled out.
• Check against policies for fit and overlap. Initiate discussion via Slack #software‑review chan‑
nel if needed for edge cases that haven’t been caught by previous checks by the EiC. If reject,
see this section about how to respond.

• Check thatmandatory parts of template are complete. If not, direct authors toward appropri‑
ate instructions.

• For packages needing continuous integration onmultiple platforms (cf criteria in this section
of the CI chapter) make sure the package gets tested onmultiple platforms (having the pack‑
age built on several operating systems via GitHub Actions for instance).

• Wherever possible when asking for changes, direct authors to automatic tools such as
usethis and styler, and to online resources (sections of this guide, sections of the R
packages book) to make your feedback easier to use. Example of editor’s checks.

• Ideally, the remarks youmake should be tackled before reviewers start reviewing.
• If initial checks show major gaps, request changes before assigning reviewers. If
the author mentions changes might take time, apply the holding label via typing
@ropensci-review-bot put on hold. You’ll get a reminder every 90 days (in the
issue) to check in with the package author(s).

• If the package raises a new issue for rOpenSci policy, start a conversation in Slack or open a
discussion on the rOpenSci forum to discuss it with other editors (example of policy discus‑
sion).

65

https://docs.ropensci.org/pkgreviewr/articles/editors.html
https://usethis.r-lib.org/
https://styler.r-lib.org/
https://r-pkgs.org/
https://r-pkgs.org/
https://github.com/ropensci/software-review/issues/207#issuecomment-379909739
https://discuss.ropensci.org/
https://discuss.ropensci.org/t/overlap-policy-for-package-onboarding/368
https://discuss.ropensci.org/t/overlap-policy-for-package-onboarding/368

8.2.2 Look for and assign two reviewers:

8.2.2.1 Tasks

• Comment with @ropensci-review-bot seeking reviewers.
• Use the email template if needed for inviting reviewers

– When inviting reviewers, include something like “if I don’t hear from you in a week, I’ll
assume you are unable to review,” so as to give a clear deadline when you’ll move on to
looking for someone else.

• Assign reviewers with @ropensci-review-bot assign @username as reviewer. add
can also be used instead of assign, and to reviewers (plural) instead of as reviewer
(single). The following is thus also valid: @ropensci-review-bot add @username to
reviewers. One command should be issued for each reviewer. If needed later, remove
reviewers with @ropensci-review-bot remove @username from reviewers.

• If youwant to change the due date for a review use @ropensci-review-bot set due date
for @username to YYYY-MM-DD.

8.2.2.2 How to look for reviewers

8.2.2.2.1 Where to look for reviewers?

As a (guest) editor, use

• the potential suggestions made by the submitter(s), (although submitters may have a nar‑
row view of the types of expertise needed. We suggest not using more than one of suggested
reviewers);

• the Airtable database of reviewers and volunteers (see next subsection);
• and the authors of rOpenSci packages.

When these sources of information are not enough,

• ping other editors in Slack for ideas,
• look for users of the package or of the data source/upstream service the package connects to
(via their opening issues in the repository, starring it, citing it in papers, talking about it on
Twitter).

• You can also search for authors of related packages on r‑pkg.org.
• R‑Ladies has a directory specifying skills and interests of people listed.
• Youmaypost a request for reviewers in the #general and/or #software‑review channels on the
rOpenSci Slack, or on social media.

66

https://ropensci.org/packages/
https://r-pkg.org/
https://rladies.org/directory/

8.2.2.2.2 Tips for reviewer search in Airtable

You can use filters, sorting, and search to identify reviewers with particular experience:

Figure 8.1: Screenshot of the Airtable filters interface with a filter on domain expertise that has to
include chemistry and technical areas that have to include continuous integration

Please check the reviewer’s most recent review and avoid anyone who has reviewed anyone
in the past six months. Also, please check if a first‑time reviewers have indicated that they
require_mentorship. If so, please use the mentorship portion of the email template and be
prepared to provide additional guidance.

8.2.2.2.3 Criteria for choosing a reviewer

Hereare criteria to keep inmindwhenchoosinga reviewer. Youmightneed topiece this information
together by searching CRAN and the potential reviewer’s GitHub page and general online presence
(personal website, Twitter).

• Has not reviewed a package for us within the last 6 months.
• Some package development experience.
• Some domain experience in the field of the package or data source
• No conflicts of interest.
• Try to balance your sense of the potential reviewer’s experience against the complexity of the
package.

• Diversity ‑ with two reviewers both shouldn’t be cis white males.
• Some evidence that they are interested in openness or R community activities, although cold
emailing is fine.

Each submission should be reviewed by two package reviewers. Although it is fine for one of them
to have less package development experience andmore domain knowledge, the review should not
be split in two. Both reviewers need to review the package comprehensively, though from their
particular perspective. In general, at least one reviewer should have prior reviewing experience,
and of course inviting one new reviewer expands our pool of reviewers.

67

8.2.3 During review:

• Check in with reviewers and authors occasionally. Offer clarification and help as needed.
• Ingeneral aim for3weeks for review, 2weeks for subsequent changes, and1week for reviewer
approval of changes.

• Upon each review being submitted,

– Write a comment thanking the reviewer with your words;
– Record the review via typing a new comment @ropensci-review-bot submit
review <review-url> time <time in hours>. E.g. for the review https://github.
com/ropensci/software‑review/issues/329#issuecomment‑809783937 the comment
wouldbe@ropensci-review-bot submit review https://github.com/ropensci/software-review/issues/329#issuecomment-809783937
time 4.

• If the author stops responding, refer to the policies and/or ping the other editors in the Slack
channel for discussion. Importantly, if a reviewerwasassigned toa closed issue, contact them
when closing the issue to explain the decision, thank them once again for their work, and
make a note in our database to assign them to a submission with high chances of smooth
software review next time (e.g. a package author who has already submitted packages to us).

• Uponchangesbeingmade, change the reviewstatus tag to5/awaiting-reviewer-response,
and request that reviewers indicate approval with the reviewer approval template.

8.2.4 After review:

• @ropensci-review-bot approve <package-name>
• If the original repository owner opposes transfer, add a line with its address to this repos list to
ensure the package gets included in rOpenSci package registry.

• Nominate a package to be featured in an rOpenSci blog post or tech note if you think it might
beof high interest. Pleasenote in the software review issueoneor two things the author could
highlight, and tag @ropensci/blog-editors for follow‑up.

• If authors maintain a gitbook that is at least partly about their package, contact an rOpen‑
Sci staff member so they might contact the authors about transfer to the ropensci-books
GitHub organisation.

8.2.5 Package promotion:

• Direct the author to the chapters of the guide about package releases, marketing and GitHub
grooming.

68

https://github.com/ropensci/software-review/issues/329#issuecomment-809783937
https://github.com/ropensci/software-review/issues/329#issuecomment-809783937
https://github.com/ropensci/roregistry/blob/gh-pages/info/not_transferred.json
https://ropensci.org/about/#team
https://ropensci.org/about/#team
https://github.com/orgs/ropensci-books
https://github.com/orgs/ropensci-books

8.3 EiC Responsibilities

The EiC serves for 3 months or a time agreed to by all members of the editorial board. The EiC is
entitled to taking scope and overlap decisions as independently as possible (but can still request
help/advice). In details, the EiC plays the following roles

• Watches all issues posted to the software‑review repo (either subscribe to repo notifications
on GitHub, or watch the #software-peer-review-feed channel on Slack).

• Tags issue with 0/editorial-team-prep

• Calls @ropensci-review-bot check srr on pre‑submission enquiries for statistical soft‑
ware. See corresponding Stats Dev Guide chapter for details.

• Assignspackagesubmissions toothereditors, including self, tohandle. Mostly this just rotates
among editors, unless the EiC thinks an editor is particularly suited to a package, or an editor
declines handling the submission due to being too busy or because of conflicting interests.

@ropensci-review-bot assign @username as editor

• Regularly (for instance weekly) monitors pace of review process thanks to devguider and re‑
minds other editors to move packages along as needed.

• On assuming EiC rotation, reviews status of current open reviews thanks to devguider and
reminds editors to respond or update status as needed.

• Responds to issues posted to the software‑review‑meta repo

• Makes decisions on scope/overlap for pre‑submission inquiries, referrals from JOSS or other
publication partners, and submissions if they see an ambiguous case (This last casemay also
be done by handling editors (see below)). To initiate discussion, this is posted to the rOpenSci
Slack editors‑only channel along with a small summary of what the (pre‑)submitted/referred
submission is about, what doubts the EiC has i.e. digesting information a bit. If after one day
or two the EiC feels they haven’t received enough answers, they can ping all editors.

– Any editor should feel free to step in on these. See this section about how to respond to
out‑of‑scope (pre‑) submissions.

– Afterexplaining theout‑of‑scopedecision,writean issuecomment@ropensci-review-bot
out-of-scope.

• Requests a new EiCwhen their rotation is up (set a calendar reminder ahead of your expected
end date and ask for volunteers in the editors’ Slack channel)

69

https://stats-devguide.ropensci.org/pkgsubmission.html#editor-in-chief

8.3.1 Using devguider::devguide_eic_report()

Install devguider and run devguider::devguide_eic_report(), open the HTML report in a
browser.

• Look over submissions in “presubmission” and “editorial‑team‑prep”. Check whether any ac‑
tion needs to be taken (polling editors, making a decision, putting the issue on hold, pinging
the submitter for an update, finding and assigning an editor).

• Rows in each section are colored by “urgency” from white (ignore) to yellow (not urgent) to
red (most urgent).

• Look over submissions in “seeking‑reviewer(s)”. If the reviewer search has been going for un‑
usually long (red color), check whether the submission is on hold, read the thread to gather
context, and contact the editor in private to ask for more information / whether the submis‑
sion fell through the cracks.

• Look over submissions in “reviewer(s)‑assigned”. If there are still missing reviews after an
unusually long time (red color), check whether the submission is on hold, read the thread to
gather context, and contact the editor in private to ask for more information / whether the
submission fell through the cracks.

• Look over submissions in “review(s)‑in‑awaiting‑changes”. If some are still lacking an author
response after an unusually long time (red color), check whether the submission is on hold,
read the thread, and contact the editor in private to ask for more information / whether the
submission fell through the cracks.

8.3.2 Asking for more details

In somecasesonlinedocumentation is sparse. Minimal README, nopkgdownwebsitemakeassess‑
ment harder. In that case please ask for more details: even if the package is deemed out‑of‑scope,
the package docs will have gotten better so we are fine asking for these efforts.

Example text

Hello <username> and many thanks for your submission.

We are discussing whether the package is in scope and need a bit more information.

Would you mind adding more details and context to the README?
After reading it someone with little domain knowledge should have been informed about the aim, goals and functionality of the package.

<optional>

70

If a package has overlapping functionality with other packages, we require it to demonstrate in the documentation [how it is best in class](https://devguide.ropensci.org/policies.html#overlap). Could you add a more detailed comparison to the packages you mention in the README so we can evaluate?
</optional>

8.3.3 Inviting a guest editor

After discussion with other editors the EiCmight invite a guest editor to handle a submission (e.g. if
submission volume is large, if all editors have a conflict of interest, if specific expertise is needed, or
as a trial prior to inviting a person to join the editorial board).

When inviting a guest editor,

• Ask about conflicts of interest using the same phrasing as for reviewers,
• Give a link to the guide for editors.

If the person said yes (yay!),

• Make sure they enabled 2FA for their GitHub account,
• Invite them to the ropensci/editors team and to the ropensci organization,
• Once they’ve accepted this repo invitation, assign the issue to them,
• Ensure they’re (already) invited to rOpenSci Slack workspace,
• Add their name to the Airtable guest‑editor table (so their names might appear in this book
and in the software‑review README).

After the review process is finished (package approved, issue closed),

• Thank the guest editor again,
• Remove them from the ropensci/editors team (but not from the ropensci organization).

8.4 Responding to out‑of‑scope submissions

Thank authors for their submission, explain the reasons for the decision, and direct them to other
publication venues if relevant, and to the rOpenSci discussion forum. Use wording from Aims and
scope in particular regarding the evolution of scope over time, and the overlap and differences be‑
tween unconf/staff/software‑review development.

Examples of out‑of‑scope submissions and responses.

71

https://help.github.com/articles/securing-your-account-with-two-factor-authentication-2fa/
https://github.com/ropensci/software-review/issues?q=is%3Aissue+is%3Aclosed+label%3Aout-of-scope

8.5 Answering reviewers’ questions

Reviewers might ask for feedback on e.g. the tone of their review. Beside pointing them at general
guidance in this guide, asking editors / opening an issue when such guidance is lacking, here are
some review examples that might be useful.

• tough‑but‑constructive example: the part of this review suggesting a re‑write of the vignette:
ropensci/software‑review#191 (comment).

• the slopes package, which ended up being fundamentally redesigned in response to the
reviews. All reviews/reviewers were at all times entirely constructive, which seems to have
played a major role in motivating the authors to embark on such a major overhaul. Com‑
ments such as, “this package does not …” or “has not …” were invariably followed by con‑
structive suggestions for what could be done (there are, for example, several in one of the
first reviews).

• tic reviews politely expressed reservations: https://github.com/ropensci/software‑
review/issues/305#issuecomment‑504762517 and https://github.com/ropensci/software‑
review/issues/305#issuecomment‑508271766

• bowerbird useful “pre‑review” that resulted in a package split before the actual reviews.

8.6 Managing a dev guide release

If you are in charge of managing a release of the very book you are reading, use the book release
guidance as an issue template to be posted in the dev guide issue tracker, and do not hesitate to ask
questions to other editors.

8.6.1 Dev guide governance

For very small amendments to the dev guide, no PR review is needed. For larger amendments, re‑
quest review fromat least a few editors (if none participated in the discussion related to the amend‑
ment, request a review from all of them on GitHub, and in the absence of any reaction merge after
a week).

Two weeks before a dev guide release, once the PR from dev to master and the release blog post
are ready for review, all editors should be pinged by GitHub (“review request” on the PR fromdev to
master) and Slack, but the release doesn’t need all of them to explicitly approve the release.

8.6.2 Blog post about a release

Theblogpost about a releasewill be reviewedby editors, andoneof @ropensci/blog-editors.

72

https://github.com/ropensci/software-review/issues/191#issuecomment-368254623
https://github.com/ropensci/software-review/issues/420
https://github.com/ropensci/software-review/issues/420#issuecomment-858231647
https://github.com/ropensci/software-review/issues/420#issuecomment-858231647
https://github.com/ropensci/software-review/issues/305#issuecomment-504762517
https://github.com/ropensci/software-review/issues/305#issuecomment-504762517
https://github.com/ropensci/software-review/issues/305#issuecomment-508271766
https://github.com/ropensci/software-review/issues/305#issuecomment-508271766
https://github.com/ropensci/software-review/issues/139#issuecomment-322713737
https://github.com/ropensci/dev_guide/issues

8.6.2.1 Content

Refer to the general rOpenSci blogging guidance, and the more specific guidance below.

First example of such a post; second example.

The blog post should mention all important items from the changelog organized in (sub)sections:
e.g. a section about big change A, another one about big change B, and one about smaller changes
lumped together. Mention the most important changes first.

For each change made by an external contributor, thank them explicitly using the information
from the changelog. E.g. [Matt Fidler](https://github.com/mattfidler/) amended our
section on Console messages [ropensci/dev_guide#178](https://github.com/ropensci/dev_guide/pull/178)..

At the end of the post,mention upcoming changes by linking to open issues in the issue tracker, and
invite readers tocontribute to thedevguidebyopening issuesandparticipating inopendiscussions.
Conclusion template:

In this post we summarized the changes incorporated into our book ["rOpenSci Packages: Development, Maintenance, and Peer Review"](https://devguide.ropensci.org/) over the last X months.
We are grateful for all contributions that made this release possible.
We are already working on updates for our next version, such as ISSUE1, ISSUE2.
Check out the [the issue tracker](https://github.com/ropensci/dev_guide/issues/) if you'd like to contribute.

8.6.2.2 Authorship

The editor writing the post is first author, other editors are listed by alphabetical order.

73

https://blogguide.ropensci.org/
https://ropensci.org/blog/2019/05/16/dev-guide-update/
https://ropensci.org/blog/2019/10/08/dev-guide-update-fall19/

9 Editorial management

Guidance for managing the editorial team.

9.1 Recruiting new editors

Recruiting new editors and maintaining a sufficient and well‑balanced editorial board is a respon‑
sibility of the Software Review Lead, with support and advice from the editorial board.

Steps:

• Start a private channel for discussion (so that it does not have a history in the editors channel
that future editors will join, which could be awkward).

• Ping editors to be sure they get a notification as this is an important topic.

• Wait for a majority of editors to chime in before inviting someone. Leave them one week to
respond.

9.2 Inviting a new editor

• Candidatesmight start bybeing guest editors. When inviting themas guest editor, invite them
as you would invite a guest editor for other reasons.

• If a candidate is guest editor first, assess how theprocesswent after the submission is tackled.
Asked other editors for their advice again.

• Send an email.

We would like to invite you to join the rOpenSci editorial board as a full member. [SPECIFIC REASONS FOR INVITATION (MENTION CONTRIBUTIONS TO ROPENSCI)].
We think you would make a wonderful addition to the team.

[IF GUEST EDITOR:You are familiar with the editor's role as you've been a guest editor]. We aim for editors to handle four packages per year ([IF GUEST EDITOR including the one one you just finished!]).
We ask that editors make an informal commitment of serving for two years, and re-evaluate their participation after that.
On a short-term basis, any editor can decline to handle a package or say, "I'm pretty busy, I can't handle a new package for a few weeks."

74

https://ropensci.org/about/#team

In addition to handling packages, editors weigh in on group editorial decisions, such as whether a package is in-scope, and determining updates to our policies.
We generally do this through Slack, which we expect editors to be able to check regularly.
We have editorial board calls annually.
We also rotate Editor-in-Chief responsibilities (first-pass scope decisions and assigning editors) amongst the board about quarterly.
You'll have the opportunity to enter this rotation once you have been on the board for some time, usually at least six months.
Some of us also take on bigger projects to improve the peer-review process, though this is entirely optional.

We hope that you'll join the board!
It's an exciting time for peer-review at rOpenSci.

Please give this some thought, ask us any questions you have, and let us know whether you can join us.

Best,
[EDITOR], on behalf of the rOpenSci Editorial Board

9.3 Onboarding a new editor

• Inform rOpenSci community manager so that

– editors are added to the rOpenSci website.
– an introduction blog post can be put together.

• If theyhaven’t alreadydone soas guest editors, request that theneweditor turnon two‑factor
authentication (2FA) for GitHub.

• Invite editors to the rOpenSci GitHub organization as member, as a member of the editors
team and the data-pkg-editors or stats-board sub‑team, as appropriate. This will give
them appropriate permissions and allow them to get team‑specific notifications.

• Editors need access to the AirTable database of software review.

• Editors need access to the private editors channel in rOpenSci Slack workspace (and to the
Slack workspace in general if they didn’t previously, in that case ask rOpenSci community
manager).

• Post a welcomemessage in the channel, pinging all editors.

• In the Slack workspace they need to be added to the editors team so that @editorswill ping
them too.

• We add editors’ names to

– dev_guide authors list
– dev_guide chapter introducing software review (at two locations in this file, as editors
and a bit below to remove them from the reviewers list)

75

https://github.com/ropensci/roweb3/#team-member
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa
https://docs.github.com/en/authentication/securing-your-account-with-two-factor-authentication-2fa
https://github.com/orgs/ropensci/teams/editors
https://github.com/orgs/ropensci/teams/editors
https://github.com/orgs/ropensci/teams/data-pkg-editors
https://github.com/orgs/ropensci/teams/stats-board
https://github.com/ropensci/dev_guide/blob/main/index.Rmd
https://github.com/ropensci/dev_guide/blob/main/softwarereview_intro.Rmd

– software‑review README (in two places in this file as well) Both the dev_guide and
software‑review README are automatically knit via continuous integration.

• Add editors to https://github.com/orgs/ropensci/teams/editors/members

9.4 Offboarding an editor

• Thank them for their work!

• Remove them from the editors‑only channel and the editors Slack team.

• Remove them from https://github.com/orgs/ropensci/teams/editors/members and sub‑
team.

• Inform rOpenSci community manager or some other staff emember so that they might be
moved to alumni teammembers on the website.

• Remove their access to the Airtable workspace.

• Remove them from

– dev_guide chapter introducing software review (at two locations in this file, as editors
and a bit below to remove them from the reviewers list)

– software‑review README (in two places in this file as well) Both the dev_guide and
software‑review README are automatically knit via continuous integration.

76

https://github.com/ropensci/software-review/blob/main/README.Rmd
https://github.com/orgs/ropensci/teams/editors/members
https://github.com/orgs/ropensci/teams/editors/members
https://github.com/ropensci/dev_guide/blob/main/softwarereview_intro.Rmd
https://github.com/ropensci/software-review/blob/main/README.Rmd

Part III

Maintaining Packages

77

10 rOpenSci packagemaintenance cheatsheet

A reminder of infrastructure and contact channels for maintainers of rOpenSci packages.

10.1 Help needed?

If you need punctual help (say, a PR review; or some CI troubleshooting), or help looking for co‑
maintainers or a new maintainer, or if you need us to retire your package, ping us in GitHub via
@ropensci/adminor emailinfo@ropensci.org. You can also use our slack packagemaintenance
channel.

Never hesitate to ask for help.

10.2 GitHub repository access

You should have administrative access to your package’s GitHub repository. If that is no longer the
case (say, the automated process failed; or you lost access after having to temporarily deactivate
two‑factor authentication), please contact us via info@ropensci.org.

10.3 Other GitHub topics

If you have any GitHub question or request (adding a collaborator to the GitHub organization for
instance) you can use a public channel of the rOpenSci slack workspace or ping @ropensci/admin
on GitHub.

10.4 pkgdown documentation

See rOpenSci docs.

78

10.5 Access to rOpenSci slack workspace

Package maintainers and developers should get access to rOpenSci slack. If you did not get the in‑
vitation or did not accept it in time, or if you want a new regular contributor receive an invitation
please email info@ropensci.org, indicating to which email address you wish to receive the invi‑
tation.

Youmight find the #package‑maintenance channel relevant for Q&A as well as friendly commisera‑
tion when needed.

10.6 Package blog posts

Refer to our blog guide.

10.7 Package issues promotion

Label issues with “help wanted” to get them broadcasted to the community.

10.8 Package use cases promotion

You can report use cases of your package or encourage users to report them via our forum to get
them published on our website and in our newsletter.

79

https://contributing.ropensci.org/resources.html#channels
https://blogguide.ropensci.org/
https://ropensci.org/help-wanted/
https://ropensci.org/usecases/

11 Collaboration Guide

Having contributors will improve your package, and if you onboard some of them as package
authors with write permissions to the repo, your packagewill bemore sustainably developed.
It can also be very enjoyable to work as a team!

This chapter contains our guidance for collaboration, in a section about making your repo
contribution‑ and collaboration‑friendly by infrastructure (code of conduct, contribution
guidelines, issue labels); and a section about how to collaborate with new contributors, in
particular in the context of the rOpenSci’s “ropensci” GitHub organization.

Besides thesemostly technical tips, it is important to remember to be kind, and to take others’
perspective into account especially when their priorities differ from yours.

11.1 Make your repo contribution and collaboration friendly

11.1.1 Code of conduct

After transfer to our GitHub organization, rOpenSci Code of Conduct will apply to your project.
Please add this text to the README

Please note that this package is released with a [Contributor
Code of Conduct](https://ropensci.org/code-of-conduct/).
By
contributing to this project, you agree to abide by its terms.

And delete the package current code of conduct if there was one.

11.1.2 Contributing guide

You can use issue, pull request and contributing guidelines. Having a contributing file as
.github/CONTRIBUTING.md or docs/CONTRIBUTING.md is compulsory. An easy way to insert a
template for a contributing guide is the use_tidy_contributing() function from the usethis
package, which inserts this template as .github/CONTRIBUTING.md. A more extensive example
is this template by Peter Desmet, or the comprehensive GitHub wiki pages for the mlr3 package.

80

https://help.github.com/articles/repository-permission-levels-for-an-organization/
https://ropensci.org/code-of-conduct/
https://usethis.r-lib.org/reference/tidyverse.html
https://usethis.r-lib.org/reference/tidyverse.html
https://github.com/r-lib/usethis/blob/main/inst/templates/tidy-contributing.md
https://gist.github.com/peterdesmet/e90a1b0dc17af6c12daf6e8b2f044e7c
https://github.com/mlr-org/mlr3/wiki

These and other templates will generally need to be modified for use with an rOpenSci package,
particularly by referring and linking to our Code of Conduct, as described elsewhere in this book.
Modifying a generic contributing guide to add a personal touch also tends to make it look less
generic andmore sincere. Personal preferences in a contributing guide include:

• Style preferences? You might however prefer to make style a configuration (of lintr, styler)
or to fix code style yourself especially if you don’t use a popular code style like the tidyverse
coding style.

• Infrastructure like roxygen2?

• Workflow preferences? Issue before a PR?

• A scope statement, like in the skimr package?

• Sandbox account creation? Mocking in tests? Linking to external docs?

rOpenSci further encourages contributing guides to include a lifecycle statement clarifying visions
and expectations for the future development of your package, like in this example. Statistical pack‑
ages are required to have a lifecycle statement, as specified in General Statistical Stanards G1.2.
That links provides a template for a simple lifecycle statement. CONTRIBUTING.md files can also
describe how you acknowledge contributions (see this section).

We encourage you to direct feedback that is not a bug report or a feature request to rOpenSci forum,
after making sure you’d see such questions on the forum. Users can use the forum to ask questions
about use and report their use cases, and you can subscribe to individual categories and tags to re‑
ceive notifications about your package. Feel free tomention this in the docs of your package and/or
the contributing guidelines/issue template. Please direct your users to tag posts with the package
name.

Once a pull request is closer to being merged, you could use a GitHub Actions PR workflow to style
the code with styler.

11.1.3 Issuemanagement

By using GitHub features around issues you can help potential contributors find them, and make
your roadmap public.

11.1.3.1 Issue templates

Youcoulduseoneor several issue template(s) tohelpusers fill betterbug reportsor feature requests.
When there are several issue templates, users who click on opening a new issue see a menu that
guide their choices.

81

https://ropensci.org/code-of-conduct/
https://github.com/jimhester/lintr
https://styler.r-lib.org/
https://github.com/rstudio/blogdown/pull/432#pullrequestreview-368391904
https://style.tidyverse.org/
https://style.tidyverse.org/
https://github.com/ropensci/skimr/blob/main/.github/CONTRIBUTING.md#understanding-the-scope-of-skimr
https://github.com/ecohealthalliance/fasterize/blob/master/CONTRIBUTING.md#roadmap
https://stats-devguide.ropensci.org/standards.html#documentation
https://discuss.ropensci.org/
https://github.com/r-lib/actions/blob/master/examples/pr-commands.yaml
https://github.com/r-lib/actions/blob/master/examples/pr-commands.yaml
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository#creating-issue-templates=

You can even configure one of the choices to point to somewhere outside of your repository (for
instance a discussion forum).

Refer to GitHub docs.

11.1.3.2 Issue labelling

You can use labels such as “help wanted” and “good first issue” to help potential collaborators,
including newbies, find your repo. Cf GitHub article. You can also use the “Beginner” label. See
examples of beginner issues over all ropensci repos.

11.1.3.3 Pinning issues

You can pin up to 3 issues by repository that will then appear at the top of your issue tracker as nice
issue cards. It can help advertise what your priorities are.

11.1.3.4 Milestones

You can create milestones and assign issues to them, which help see what you plan for the next
version of your package for instance.

11.1.4 Communication with users

You can point users to rOpenSci forum if youmonitor it, or enable GitHubDiscussions for your pack‑
age repository. Each GitHub discussion can be converted to an issue if needed (and the other way
round, issues can be converted to discussions).

11.2 Working with collaborators

First thing first: keep in touch with your GitHub repository!

• do not forget towatch your GitHub repository to be notified of issues or pull requests (alter‑
natively, if you work in bursts, maybe add the information to the contributing guide).

• do not forget to push updates you have locally.

• disable failing tests if you cannot fix them as they create noise in PRs that can puzzle new
contributors.

82

https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository#configuring-the-template-chooser=
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://help.github.com/articles/helping-new-contributors-find-your-project-with-labels/
https://github.com/search?q=user%3Aropensci+user%3Aropenscilabs+label%3ABeginner+state%3Aopen&type=Issues
https://docs.github.com/en/articles/pinning-an-issue-to-your-repository
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://docs.github.com/en/discussions
https://docs.github.com/en/github/managing-subscriptions-and-notifications-on-github/managing-subscriptions-for-activity-on-github

11.2.1 Onboarding collaborators

There’s no general rOpenSci rule as to how you should onboard collaborators. You should increase
their rights to the repo as you gain trust, and you should definitely acknowledge contributions (see
this section).

You can ask a new collaborator tomake PRs (see following section for assessing a PR locally, i.e. be‑
yond CI checks) to dev/main and assess them before merging, and after a while let them push to
main, although you might want to keep a system of PR reviews… even for yourself once you have
teammates!

A possible model for onboarding collaborators is provided by Jim Hester in his lintr repo.

If your problem is recruiting collaborators, you can post an open call like Jim Hester’s on Twitter,
GitHub, andas an rOpenSci packageauthor, you canask for help in rOpenSci slack andask rOpenSci
team for ideas for recruiting new collaborators.

11.2.2 Working with collaborators (including yourself)

Branches are cheap. Use them extensively when developing features, testing out new ideas, fixing
problems.

One of the branches is the default / main branch, where, if you follow trunk‑based development,
you “merge small, frequent updates”. See also GitHub flow and GitLab flow docs. You might want
to frequently increment version numbers (in DESCRIPTION). One particular aspect of working with
collaborators is reviewing pull requests, with some useful guidance in:

• The Art of Giving and Receiving Code Reviews (Gracefully), by Alex Hill;
• GitHub documentation about PR reviews.

You might want to tinker with your GitHub repository settings to, for instance, require pull request
reviews before merging. See also GitHub docs about “code owners”.

For making and reviewing pull requests we recommend exploring usethis functions.

For your “git remote” setup refer to happy git with r. See also Useful Git patterns for real life in the
same book.

83

https://github.com/jimhester/lintr/issues/318
https://twitter.com/jimhester_/status/997109466674819074
https://github.com/jimhester/lintr/issues/318
https://happygitwithr.com/git-branches.html
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://docs.github.com/en/get-started/quickstart/github-flow
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://www.alexandra-hill.com/2018/06/25/the-art-of-giving-and-receiving-code-reviews/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests/about-pull-request-reviews
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging=
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging=
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://usethis.r-lib.org/articles/pr-functions.html
https://happygitwithr.com/common-remote-setups.html
https://happygitwithr.com/workflows-intro.html

11.2.3 Be generous with attributions

If someone contributes to your repository consider adding them in DESCRIPTION, as contributor
(“ctb”) for small contributions, author (“aut”) for bigger contributions. Traditionally when citing
a package in a scientific publication only “aut” authors are listed, not “ctb” contributors; and on
pkgdown websites only “aut” names are listed on the homepage, all authors being listed on the
authors/ page.

At aminimumconsider adding thenameof contributors near the feature/bug fix line inNEWS.md.

We recommend your being generous with such acknowledgements, because it is a nice thing to do
and because it will make folks more likely to contribute again to your package or other repos of the
organization.

As a reminder from our packaging guidelines if your package was reviewed and you feel that your
reviewers have made a substantial contribution to the development of your package, you may list
them in the Authors@R field with a Reviewer contributor type ("rev"), like so:

person("Bea", "Hernández", role = "rev",
comment = "Bea reviewed the package (v. X.X.XX) for rOpenSci, see <https://github.com/ropensci/software-review/issues/116>"),

Only include reviewers after asking for their consent. Read more in this blog post “Thanking Your
Reviewers: Gratitude through Semantic Metadata”. Note that ‘rev’ will raise a CRAN NOTE unless
the package is built using R v3.5. Make sure you use roxygen2’s latest CRAN version.

Please do not list editors as contributors. Your participation in and contribution to rOpenSci is
thanks enough!

11.2.4 Welcoming collaborators to rOpenSci

If you give someone write permissions to the repository,

• please contact a staff member so that this new contributor might get invited to rOpenSci’s
“ropensci” GitHub organization (instead of being an outside collaborator)

• please contact rOpenSci’s communitymanager or another staffmember so that this new con‑
tributor might get get invited to rOpenSci Slack workspace.

11.3 Further resources

• rOpenSci community call Set Up Your Package to Foster a Community.
• For re‑using kind and usual answers, consider GitHub’s saved replies.

84

https://ropensci.org/blog/2018/03/16/thanking-reviewers-in-metadata/
https://ropensci.org/blog/2018/03/16/thanking-reviewers-in-metadata/
https://ropensci.org/about#team
https://help.github.com/articles/repository-permission-levels-for-an-organization/#outside-collaborators
https://ropensci.org/about#team
https://ropensci.org/commcalls/apr2021-pkg-community/
https://docs.github.com/en/github/writing-on-github/working-with-saved-replies/using-saved-replies

12 Changing packagemaintainers

This chapter presents our guidance for taking over maintenance of a package.

12.1 Do youwant to give upmaintenance of your package?

We have a call for contributors section in our newsletter that comes out every two weeks. The sec‑
tion is called Call For Contributors. In that section we highlight packages looking for newmaintain‑
ers. If you are looking to leave the role of maintainer of your package, get in touch with us and we
can highlight your package in our newsletter.

12.2 Do youwant to take overmaintenance of a package?

We have a call for contributors section in our newsletter that comes out every two weeks. The sec‑
tion is called Call For Contributors. In that section we highlight packages looking for newmaintain‑
ers. If you are not subscribed to the newsletter already, it’s a good idea to subscribe to get notified
when there’s a package looking for a newmaintainer.

12.3 Taking over maintenance of a package

• Addyourself as thenewmaintainer in theDESCRIPTION file,withrole = c("aut", "cre"),
andmake the former maintainer aut only.

• Make sure to change maintainer to your name anywhere else in the package, while retain‑
ing the former maintainer as an author (e.g, package level manual file, CONTRIBUTING.md,
CITATION, etc.)

• The Collaboration Guide has guidance about adding newmaintainers and collaborators
• Packages that have been archived or orphaned on CRAN don’t need permission of the previ‑
ous maintainer to be taken over on CRAN. In these cases do get in touch with us so we can
offer any help as needed.

85

https://news.ropensci.org/
https://cran.r-project.org/src/contrib/Orphaned/README

• If the package has not been archived by CRAN and there is a maintainer change, have the old
maintainer email CRAN and put in writing who the new maintainer is. Make sure to mention
that email about themaintainer changewhen you submit the first new version to CRAN. If the
old maintainer is unreachable or will not send this email get in touch with rOpenSci staff.

• If the previous maintainer is reachable, scheduling a meeting will help you get the “lay of the
land”

12.3.1 FAQ for newmaintainers

• There are a few unresolved issues from the package that I don’t know how to fix. Whommay
I ask for help?

It depends; here’s what to do in different scenarios:

– if the old maintainer can be contacted: reach out to them, and ask for help;
– rOpenSci slack: good for getting help on specific or general problems, see the #package‑
maintenance channel;

– rOpenSci discussion forum: this forum is a good option, feel free to ask any questions
there;

– rOpenSci staff: feel free to get in touch with one of us via email/pinging us on GitHub
issues, we’ll be happy to help;

– of course there’s general R help too if that suits your needs: Posit community forum,
StackOverflow, Mastodon (#rstats), etc.

• Howmuch can/should you change in the package?

For general help on changing code in a package, see the Package evolution section.

When thinking though this, there are many considerations.

How much time do you have to spend on the package? If you have very limited time, it’d be
best to focus on themost critical tasks, whatever those are for the package in question. If you
have ample amount of time, your goals can be larger in scope.

How mature is the package? If the package is mature, many people likely have code that
depends on the package’s API (i.e., the exported functions, and their parameters). In addi‑
tion, if there are packages that depend on your package on CRAN, then you need to check
that whatever changes youmake don’t break those packages. Themoremature the package
is, the more careful you need to be about making changes, especially with the names of ex‑
ported functions, their parameters, and the exact structure ofwhat exported functions return.
Changes can bemore easily made that only affect internals of the package.

86

https://discuss.ropensci.org/c/package-development/29
https://ropensci.org/about/#team
https://community.rstudio.com/

12.4 Tasks for rOpenSci staff

As an organization, rOpenSci is interested inmaking sure packages in our suite are available as long
as they are useful to the community. As maintainers need to move on, we will in most cases try to
get a newmaintainer for each package. To these ends, the following tasks are the responsibility of
rOpenSci staff.

• If a repository hasn’t seen any activity (commits, issues, pull requests) in quite a long time it
may simply be a mature package with little need for changes/etc., so take this into account.

• Current maintainer has not responded to issues/pull requests in many months, via any of
emails, GitHub issues, or Slack messages:

– Make contact and see what the situation is. They may say they’d like to step down as
maintainer, in which case look for a newmaintainer

• Current maintainer is completely missing/not responding

– If this happens we will try to contact the maintainer for up to one month. However, if
updating the package is urgent, wemay use our admin access tomake changes on their
behalf.

• Put a call out in the “Call for Contributors” section of the rOpenSci newsletter for a newmain‑
tainer ‑ open an issue in the newsletter repo.

87

https://github.com/ropensci/monthly/

13 Releasing a package

Yourpackage shouldhavedifferent versionsover time: snapshots of a stateof thepackage that
you can release to CRAN for instance. These versions should be properly numbered, released
and described in a NEWS file. More details below.

Note that you could streamline the process of updating NEWS and versioning your package by
using the fledge package.

13.1 Versioning

• We strongly recommend that rOpenSci packages use semantic versioning. A detailed expla‑
nation is available in the lifecycle chapter of the R packages book.

13.2 Releasing

• Using usethis::use_release_issue() and devtools::release()will help you remem‑
ber about more checks.

• Git tag each release after every submission to CRAN. more info

• CRAN does not like too frequent updates. That said, if you notice a major problem one week
after a CRAN release, explain it in cran‑comments.md and try releasing a newer version.

13.3 News file

A NEWS file describing changes associated with each versionmakes it easier for users to see what’s
changing in the package and how it might impact their workflow. You must add one for your pack‑
age, andmake it easy to read.

• It is mandatory to use a NEWS or NEWS.md file in the root of your package. We recommend
using NEWS.md to make the file more browsable.

• Please use our example NEWS file as amodel. You can find a good NEWS file in the wild in the
taxize package repo for instance.

88

https://github.com/cynkra/fledge
https://r-pkgs.org/lifecycle.html
https://help.github.com/articles/creating-releases/
https://happygitwithr.com/workflows-browsability.html
https://github.com/ropensci/taxize/blob/master/NEWS.md
https://github.com/ropensci/taxize/blob/master/NEWS.md

• If you use NEWS, add it to .Rbuildignore, but not if you use NEWS.md
• Update the news file before every CRAN release, with a section with the package name, ver‑
sion and date of release, like (as seen in our example NEWS file):

foobar 0.2.0 (2016-04-01)
=========================

• Under thatheader, put in sectionsasneeded, including: NEW FEATURES,MINOR IMPROVEMENTS,
BUG FIXES, DEPRECATED AND DEFUNCT, DOCUMENTATION FIXES and any special heading
grouping a large number of changes. Under each header, list items as needed (as seen in our
example NEWS file). For each item give a description of the new feature, improvement, bug
fix, or deprecated function/feature. Link to any related GitHub issue like (#12). The (#12)
will resolve on GitHub in Releases to a link to that issue in the repo.

• After you have added a git tag and pushed up toGitHub, add the news items for that tagged
version to theRelease notes of a release in yourGitHub repowith a title likepkgname v0.1.0.
See GitHub docs about creating a release.

• New CRAN releases will be written about in our newsletter but see next chapter about mar‑
keting about how to informmore potential users about the release.

• For more guidance about the NEWS file we suggest reading the tidyverse NEWS style guide.

89

https://help.github.com/articles/creating-releases/
https://news.ropensci.org/
https://style.tidyverse.org/news.html

14 Marketing your package

Wewill help you promoting your package but here are somemore things to keep in mind.

• If you hear of an use case of your package, please encourage its author to post the link to our
discussion forum in the Use Cases category, for a toot (Mastodon post) from rOpenSci and
inclusion in the rOpenSci monthly newsletter. We also recommend you to add a link to the
use case in a “use cases in the wild” section of your README.

• Post about your package on Mastodon using the “#rstats” hashtag and tag rOpenSci! This
might helpwith contributor/user engagement. Exampleposts fromrOpenSci itself: Apackage
a day, Help wanted post, Use cases, Welcome post.

• When you release a new version of your package or release it to CRAN for the first time,

– Make a pull request to R Weekly with a line about the release under the “New Releases”
section (or “New Packages” for the first GitHub/CRAN release).

– Post about it on social media.

– Consider submitting a short post about the release to rOpenSci tech notes. Contact
rOpenSci Community Manager, (e.g. via Slack or info@ropensci.org). Refer to the guide‑
lines about contributing a blog post).

– Submit your package to lists of packages such as CRAN Task Views.

• If you choose to market your package by giving a talk about it at a meetup or conference (ex‑
cellent idea!) read this article of Jenny Bryan’s and Mara Averick’s.

90

https://discuss.ropensci.org/c/usecases
https://discuss.ropensci.org/t/about-the-usecases-category/33
https://discuss.ropensci.org/t/about-the-usecases-category/33
https://github.com/rweekly/rweekly.org
https://ropensci.org/technotes/
mailto:info@ropensci.org
https://blogguide.ropensci.org
https://blogguide.ropensci.org
https://cran.r-project.org/web/views/
https://www.tidyverse.org/articles/2018/07/carpe-talk/

15 GitHub Grooming

rOpenSci packages are currently in their vast majority developed on GitHub. Here are a few
tips to leverage the platform in a section about making your repo more discoverable and a
section about marketing your own GitHub account after going through peer review.

15.1 Make your repositorymore discoverable

15.1.1 GitHub repo topics

GitHub repo topics help browsing and searching GitHub repos, are used by R‑universe on package
pages and for search results, and are digested by codemetar for rOpenSci registry keywords.

We recommend:

• Adding “r”, “r‑package” and “rstats” as topics to your package repo.

• Adding any other relevant topics to your package repo.

Wemight make suggestions to you after your package is onboarded.

15.1.2 GitHub linguist

GitHub linguist will assign a language for your repo based on the files it contains. Some packages
containing a lot of C++ code might get classified as C++ rather than R packages, which is fine and
shows the need for the “r”, “r‑package” and “rstats” topics.

We recommend overriding GitHub linguist by adding or modifying a .gitattributes to your repo in
two cases:

• If you store html files in non standardplaces (not in docs/, e.g. in vignettes/) use thedocumen‑
tation overrides. Add *.html linguist-documentation=true to .gitattributes (Example in
the wild)

• If your repo contains code you haven’t authored, e.g. JavaScript code, add inst/js/*
linguist-vendored to .gitattributes (Example in the wild)

91

https://blog.github.com/2017-01-31-introducing-topics/
https://github.com/r-universe-org/help#how-to-add-keyword-labels-to-an-r-package
https://github.com/r-universe-org/help#how-to-add-keyword-labels-to-an-r-package
https://github.com/ropensci/codemetar
https://github.com/github/linguist
https://github.com/ropensci/ecoengine/blob/56b64d8d29dfae430a776d1dd440b240452eb1bf/.gitattributes#L5
https://github.com/ropensci/ecoengine/blob/56b64d8d29dfae430a776d1dd440b240452eb1bf/.gitattributes#L5
https://github.com/ropensci/wellknown/blob/4435eb620eeae346d2cab7d62276c29dee29a898/.gitattributes#L1

This way the language classification and statistics of your repository will more closely reflect the
source code it contains, aswell asmaking itmorediscoverable. Notably, if linguist doesnot correctly
recognize your repo as containing mainly R code, your package won’t appear in search results with
the language:R filter. Similarly, your repo cannot be listed among the trending R repos.

More info about GitHub linguist overrides here.

15.2 Market your own account

• As the author of an onboarded package, you are now a member of rOpenSci’s “ropensci”
GitHub organization. By default, organization memberships are private; see how to make it
public in GitHub docs.

• Even after your package repo has been transferred to rOpenSci, you can pin it under your own
account.

• In general we recommend adding at least an avatar (which doesn’t need to be your face!) and
your name to your GitHub profile.

92

https://github.com/trending/r
https://github.com/github/linguist#overrides
https://help.github.com/articles/publicizing-or-hiding-organization-membership/
https://help.github.com/articles/publicizing-or-hiding-organization-membership/
https://help.github.com/articles/pinning-repositories-to-your-profile/
https://help.github.com/articles/pinning-repositories-to-your-profile/
https://help.github.com/articles/customizing-your-profile/

16 Package evolution ‑ changing stuff in your
package

This chapter presents our guidance for changing stuff in your package: changing parame‑
ter names, changing function names, deprecating functions, and even retiring and archiving
packages.

This chapter was initially contributed as a tech note on rOpenSci website by Scott Chamberlain;
you can read the original version here.

16.1 Philosophy of changes

Everyone’s free to have their own opinion about how freely parameters/functions/etc. are changed
in a library ‑ rules about package changes are not enforced by CRAN or otherwise. Generally, as a
library gets moremature, changes to user facingmethods (i.e., exported functions in an R package)
should become very rare. Libraries that are dependencies of many other libraries are likely to be
more careful about changes, and should be.

16.2 The lifecycle package

This chapter presents solutions that do not require the lifecycle package but you might still find it
useful. We recommend reading the lifecycle documentation.

16.3 Parameters: changing parameter names

Sometimes parameter names must be changed for clarity, or some other reason.

A possible approach is check if deprecated arguments are not missing, and stop providing a mean‑
ingful message.

93

https://github.com/sckott
https://ropensci.org/technotes/2017/01/05/package-evolution/
https://lifecycle.r-lib.org/articles/stages.html

foo_bar <- function(x, y) {
if (!missing(x)) {

stop("use 'y' instead of 'x'")
}
y^2

}

foo_bar(x = 5)
#> Error in foo_bar(x = 5) : use 'y' instead of 'x'

If you want to be more helpful, you could emit a warning but automatically take the necessary ac‑
tion:

foo_bar <- function(x, y) {
if (!missing(x)) {

warning("use 'y' instead of 'x'")
y <- x

}
y^2

}

foo_bar(x = 5)
#> 25

Beawareof theparameter.... If your functionhas..., and youhave already removedaparameter
(lets call it z), a user may have older code that uses z. When they pass in z, it’s not a parameter in
the function definition, and will likely be silently ignored – not what you want. Instead, leave the
argument around, throwing an error if it used.

16.4 Functions: changing function names

If youmust change a function name, do it gradually, as with any other change in your package.

Let’s say you have a function foo.

foo <- function(x) x + 1

However, you want to change the function name to bar.

Instead of simply changing the function name and foo no longer existing straight away, in the first
version of the package where bar appears, make an alias like:

94

#' foo - add 1 to an input
#' @export
foo <- function(x) x + 1

#' @export
#' @rdname foo
bar <- foo

With the above solution, the user can use either foo() or bar() – either will do the same thing, as
they are the same function.

It’s also useful to have a message but then you’ll only want to throw that message when they use
the old function, e.g.,

#' foo - add 1 to an input
#' @export
foo <- function(x) {

warning("please use bar() instead of foo()", call. = FALSE)
bar(x)

}

#' @export
#' @rdname foo
bar <- function(x) x + 1

After users have used the package version for a while (with both foo and bar), in the next version
you can remove the old function name (foo), and only have bar.

#' bar - add 1 to an input
#' @export
bar <- function(x) x + 1

16.5 Functions: deprecate & defunct

To remove a function from a package (let’s say your package name is helloworld), you can use the
following protocol:

• Mark the function as deprecated in package version x (e.g., v0.2.0)

In the function itself, use .Deprecated() to point to the replacement function:

95

foo <- function() {
.Deprecated("bar")

}

There’s options in.Deprecated for specifyinganew functionname, aswell as anewpackagename,
which makes sense whenmoving functions into different packages.

The message that’s given by .Deprecated is a warning, so can be suppressed by users with
suppressWarnings() if desired.

Make a man page for deprecated functions like:

#' Deprecated functions in helloworld
#'
#' These functions still work but will be removed (defunct) in the next version.
#'
#' \itemize{
#' \item \code{\link{foo}}: This function is deprecated, and will
#' be removed in the next version of this package.
#' }
#'
#' @name helloworld-deprecated
NULL

This creates a man page that users can access like ?`helloworld-deprecated` and they’ll see in
the documentation index. Add any functions to this page as needed, and take away as a function
moves to defunct (see below).

• In the next version (v0.3.0) you canmake the function defunct (that is, completely gone from
the package, except for a man page with a note about it).

In the function itself, use .Defunct() like:

foo <- function() {
.Defunct("bar")

}

Note that the message in .Defunct is an error so that the function stops whereas .Deprecated
uses a warning that let the function proceed.

In addition, it’s good to add ... to all defunct functions so that if users pass in any parameters
they’ll get the same defunct message instead of a unused argumentmessage, so like:

96

foo <- function(...) {
.Defunct("bar")

}

Without ... gives:

foo(x = 5)
#> Error in foo(x = 5) : unused argument (x = 5)

And with ... gives:

foo(x = 5)
#> Error: 'foo' has been removed from this package

Make aman page for defunct functions like:

#' Defunct functions in helloworld
#'
#' These functions are gone, no longer available.
#'
#' \itemize{
#' \item \code{\link{foo}}: This function is defunct.
#' }
#'
#' @name helloworld-defunct
NULL

This creates a man page that users can access like ?`helloworld-defunct` and they’ll see in the
documentation index. Add any functions to this page as needed. You’ll likely want to keep thisman
page indefinitely.

16.5.1 Testing deprecated functions

You don’t have to change the tests of deprecated functions until they are made defunct.

• Consider any changes made to a deprecated function. Along with using .Deprecated inside
the function, did you change the parameters at all in the deprecated function, or create a new
function that replaces the deprecated function, etc. Those changes should be tested if any
made.

97

• Related to above, if the deprecated function is simply getting a name change, perhaps test
that the old and new functions return identical results.

• suppressWarnings() couldbeused to suppress thewarning thrown from.Deprecated, but
tests are not user facing, so it is not that bad if the warning is thrown in tests, and the warning
could even be used as a reminder to the maintainer.

Once a function is made defunct, its tests are simply removed.

16.6 Archiving packages

Software generally has a finite lifespan, and packagesmay eventually need to be archived. Archived
packages are archived and moved to a dedicated GitHub organization, ropensci‑archive. Prior to
archiving, the contents of the README file should be moved to an alternative location (such as
“README‑OLD.md”), and replacedwithminimal contents including something like the following:

<package name>

[![Project Status: Unsupported](https://www.repostatus.org/badges/latest/unsupported.svg)](https://www.repostatus.org/#unsupported)
[![Peer-review badge](https://badges.ropensci.org/<issue_number>_status.svg)](https://github.com/ropensci/software-review/issues/<issue_number>)

This package has been archived. The former README is now in [README-old](<link-to-README-old>).

The repo statusbadge shouldbe “unsupported” for formerly releasedpackages, or “abandoned” for
former concept or WIP packages, in which case the badge code above should be replaced with:

[![Project Status: Abandoned](https://www.repostatus.org/badges/latest/abandoned.svg)](https://www.repostatus.org/#abandoned)

An example of aminimal README in an archived package is in ropensci‑archive/monkeylearn. Once
the README has been copied elsewhere and reduced to minimal form, the following steps should
be followed:

□ Close issues with a sentence explaining the situation and linking to this guidance.
□ Archive the repository on GitHub (also under repo settings).
□ Transfer the repository to ropensci‑archive, or request an rOpenSci staff member to transfer

it (you can email info@ropensci.org).

Archived packages may be unarchived if authors or a new person opt to resume maintenance. For
that please contact rOpenSci. They are transferred to the ropenscilabs organization.

98

https://community.rstudio.com/t/unit-testing-of-a-deprecated-function/42837/2
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://github.com/ropensci-archive
https://github.com/ropensci-archive/monkeylearn/blob/master/README.md
https://github.com/ropensci-archive
https://ropensci.org/about/#team

17 Package Curation Policy

This chapter summarizes a proposed curation policy for rOpenSci’s ongoing maintenance of
packages developed as part of rOpenSci activities and/or under the rOpenSci GitHub organi‑
zation. This curation policy aims to support these goals:

• Ensure packages provided by rOpenSci are up‑to‑date and high quality

• Provide clarity as to the development status and and review status of any software in
rOpenSci repositories

• Manage maintenance effort for rOpenSci staff, package authors, and volunteer contrib‑
utors

• Provide a mechanism to gracefully sunset packages while maintaining peer‑review
badging

Elements of infrastructure described below needed for implementation of the policy are in some
cases partly built and in other cases not yet begun. We aim to adopt this policy in part to prioritize
work on these components.

17.1 The package registry

• The rOpenSci package registry is a central listing of R packages currently or formerly main‑
tained or reviewed by rOpenSci. It contains essential package metadata including develop‑
ment and review status, and will be the source of data for display on websites, badges, etc.
It will allow this listing to be maintained independently of package or infrastructure hosting
platforms.

17.2 Staff‑maintained packages

Staff‑maintained packages are developed and maintained by rOpenSci staff as part of rOpenSci
projects. These packages may also be peer‑reviewed packages, but are not necessarily peer re‑
viewed. Many are infrastructure packages that fall out of scope for peer review.

99

https://github.com/ropensci/roregistry

• Staff‑maintained packages will be listed in the registry with tag “staff_maintained” and listed
on rOpenSci’s packages web page or similar venues with tag “staff‑maintained”

• These packages will be stored in the “ropensci” GitHub organization

• Staff‑maintained packages and their docs will be built by rOpenSci system. This system does
not send notifications but it outputs results as GitHub commit status (red check mark or red
cross).

• When the packages fail checks, rOpenSci staff will endeavor to fix changes, prioritizing pack‑
ages based on user base (downloads), reverse dependencies, or strategic goals.

• On a biannual or annual basis, rOpenSci will review all packages that have been failing for
over a month to determine whether to transfer them to the “ropensci‑archive” GitHub orga‑
nization.

• Packages consistently failingandwithout anongoingplan to return toactivemaintenancewill
move to “archive” status. When archived, staff packages will move to the “ropensci‑archive”
repository (to be created) and and gain the “archived” type in the registry. They will not be
built on rOpenSci system.

• Archived packageswill not be displayed by default on the packageswebpage. A special tab of
packages pageswill display thesewith "type": "archived" thatwere either peer‑reviewed
or staff‑maintained.

• Archived packages can be unarchived when the old or a newmaintainer is willing to address
the problems and wants to revive the package. For that please contact rOpenSci. They are
transferred to the ropenscilabs organization.

17.3 Peer‑reviewed packages

Peer‑reviewed packages are those contributed to the rOpenSci by the community and have passed
through peer review. They need to be in‑scope at the time of submission to be reviewed.

• Upon acceptance, these peer‑reviewed packages are transferred from the author’s GitHub to
the “ropensci” GitHub organization

• Peer‑reviewed packages will be in the registry tagged as “peer‑reviewed” and have a peer‑
reviewed badge in their README.

• Peer‑reviewed packages will be listed on rOpenSci’s web page or similar venues with tag
“peer‑reviewed”

• Peer‑reviewed packages and their docs will be built by rOpenSci system. This system does
not send notifications but it outputs results as GitHub commit status (red check mark or red
cross).

100

https://status.ropensci.org/
https://github.com/ropensci-archive
https://github.com/ropensci-archive
https://ropensci.org/contact/
https://status.ropensci.org/

• Annually or bi‑annually, rOpenSci staffwill reviewpackages in a failing state or have been fail‑
ing for extended periods, and contact the authors to determine ongoing maintenance status
and expected updates. Based on this exchange, rOpenScimay opt to retain the package’s cur‑
rent status with the expectation of an updates, contribute support or seek a newmaintainer,
or transfer the package to “archived” status.

• Based on user base (measured by downloads), reverse dependencies, or rOpenSci strategic
goals, rOpenSci staffmay support failingpackages viaPRs reviewedbypackageauthors, or di‑
rect changes (if authors are unresponsive for approximately amonth). rOpenSci will also pro‑
vide support to package authors on request, both by staff and community volunteers, based
on time available.

• At the author’s request, or if authors are unresponsive to inquiries for approximately amonth,
rOpenSci may seek a new maintainer for select peer‑reviewed packages it deems have high
community value based on user base/downloads, reverse dependencies, or rOpenSci strate‑
gic goals.

• When archived, these packages will move from the “ropensci” GitHub organization to the
“ropensci‑archive” organization (or author GitHub accounts if desired), following transfer
guidance. They will gain the “archived” type in the registry. They will retain “peer‑reviewed”
tags and badges. They will not be built on rOpenSci system.

• Archived packages will not be displayed by default. A special tab of packages pages will dis‑
play these with "type": "archived" that were either peer‑reviewed or staff‑maintained.

17.4 Legacy acquired packages

“Legacy”packages arepackagesnot createdormaintainedby rOpenSci staffandnotpeer reviewed,
but are under the rOpenSci GitHub organization(s) due to historical reasons. (Prior to establishing
the peer review process and its scope, rOpenSci absorbed packages from various developers with‑
out well‑defined criteria.)

• rOpenSci will transfer legacy packages back to author organizations and repositories. If au‑
thors are uninterested, we will transfer them to the “ropensci‑archive” repository following
transfer guidance. If packages are in‑scope, rOpenSci will inquire if authors would like to sub‑
mit them to the Software Review process.

• Legacy packages will not be listed in the package registry.

• Exceptions may be made for packages that are vital parts of the R and/or rOpenSci package
ecosystemwhich are actively monitored by staff.

101

https://devguide.ropensci.org/policies.html#aims-and-scope

17.5 Incubator packages

“Incubator” packages are in‑developmentpackages createdby staffor communitymembers as part
of community projects, such as those created at unconferences

• Incubator packages will live in the “ropenscilabs” organization.

• Incubator packages will appear in the package registry with the “incubator” tag

• Incubator packageswill not appear on thewebsite bydefault, but packages pageswill include
an “experimental packages” tab.

• Incubatorpackagesand theirdocswill bebuilt by rOpenSci system. This systemdoesnot send
notifications but it outputs results as GitHub commit status (red checkmark or red cross). The
docs will indicate clearly the package is experimental.

• Biannually or annually, rOpenSci will contact incubator maintainers about repositories at
least threemonthsold, inquiringaboutdevelopment statusandauthorpreferences formigra‑
tion to peer‑review, ropensci‑archive, or to author organizations. Based on response, pack‑
age will be migrated immediately, peer review will be initiated, or migration will be deferred
to the next review. Incubator packages will be migrated to ropensci‑archive by default after
one year, following transfer guidance.

• Archived incubator packages will gain the “archived” type.

17.5.1 Incubator non‑R‑packages

• The “incubator” organization will also include non‑R‑package projects.

• These projects will not be listed in the registry or appear on a web page, and will not be auto‑
matically built.

• Migrationpolicywill be the sameas for Rpackages,with appropriatemigration locations (e.g.,
ropensci‑books)

• If archived, non‑R‑packages will move to “ropensci‑archive” following transfer guidance.

17.6 Books

rOpenSci books are long‑form documentation, often bookdown‑formatted, related to rOpenSci
packages, projects, or themes, created by both rOpenSci staff and community members.

• Books will live in the “ropensci‑books” organization

• Books will be hosted at books.ropensci.org

102

https://status.ropensci.org/

• Booksmay bemature or in‑development, butmust haveminimal outlines/content beforemi‑
grating into “ropensci‑books” (e.g. from “ropenscilabs”).

• The authorship and development status of a book should be clearly described on its home
page and README.

• rOpenSci may provide badges or templates (e.g., “In development,” “Community Main‑
tained,”) for authors to use on book home pages in the future

103

18 Contributing Guide

This chapter describes our Contributing Guide that outlines how you canmake code and non‑
code contributions to the rOpenSci project.

So you want to contribute to rOpenSci? Fantastic! We developed the rOpenSci Community Con‑
tributing Guide to welcome you to rOpenSci and help you recognize yourself as a potential contrib‑
utor. It will help you figure out what youmight gain by giving your time, expertise, and experience,
match your needs with things that will help rOpenSci’s mission, and connect you with resources to
help you along the way.

Our staff and community actively foster a welcoming environment where users and developers
fromdifferent backgrounds and skill levels learn, share ideas and innovate together openly through
shared norms and shared software. Participation in all rOpenSci activities is supported by our Code
of Conduct.

We welcome code and non‑code contributions from new and seasoned coders at any career stage,
and in any sector. You don’t have to be a developer! Maybe you want to spend 30minutes sharing
your package use case in our public forum or reporting a bug, one hour learning by attending a
Community Call, five hours reviewing an R package submitted for open peer review, ormaybe you
want tomake an ongoing commitment to help maintain a package.

What are some benefits of contributing?

• Connect with a community who shares your interest in making science more open
• Learn from people outside your domain who use R with challenges similar to yours
• Ask and answer new research questions by getting to know new software tools and allies
• Feel confident and supported in your efforts to write code and develop software
• Gain visibility for your open source work
• Improve the software you use or build
• Level up your R skills and help others level up theirs
• Level up your writing skills
• Get more exposure for your package

Consult our ContributingGuide andbrowse “What brings youhere?” to findwhich I want to… state‑
ments fit you best and choose your path! To help you recognize yourself, we’ve grouped these into:
Discover; Connect; Learn; Build; Help. For each category, we list examples of what those contribu‑
tions might look like and we link to our resources for the details you need.

104

https://contributing.ropensci.org/
https://contributing.ropensci.org/
https://ropensci.org/code-of-conduct
https://ropensci.org/code-of-conduct
https://contributing.ropensci.org/

Part IV

Appendix

105

19 NEWS

19.1 0.9.0

• 2024‑01‑09, update roxygen2 wording (@vincentvanhees, #792).

• 2023‑12‑15, update roxygen2 advice, mainly linking to roxygen2 website (#750).

• 2023‑09‑15, add suggestions for API packages (#496).

• Translation to Spanish!

• 2023‑07‑17, Update Aims and Scope to include translation packages, remove experimental
text‑processing categories, and provide clarifications around API wrappers

• 2023‑05‑04, Added link to Bioconductor book (#663, @llrs).

• 2023‑04‑26, Changed suggested lifecycle stage in authors guide (#661, @bart1).

• 2023‑04‑25, changed the COI section to use parallel construction (#659, @eliocamp).

• 2022‑07‑04, Add resources around GitHub workflows (#479, @maurolepore).

• 2023‑02‑14, update instructions for CITATION to reflect new CRAN policies (#604, #609).

• 2023‑02‑14, add packagemaintainer cheatsheet (#608).

• 2023‑01‑25, add Mastodon as social media (#592, by @yabellini).

• 2023‑01‑25, add Mastodon as social media (#592, by @yabellini).

• 2023‑01‑20, fix small formating error (#590 by @eliocamp).

• 2022‑11‑22, mention shinytest2 near shinytest.

• 2022‑09‑20, add editor instruction to add “stats” label to stats submissions

• 2022‑09‑20, fixed link to reviewerapproval template (#548), and renderingof editor’s template
(#547)

• 2022‑08‑23, add recommendation to document argument default (@Bisaloo, #501)

• 2022‑08‑06, fix link to R Packages book (#498)

• 2022‑07‑21, mention GitHub Discussions and GitHub issue templates. (#482)

106

• 2022‑07‑21, highlight values for reviewing in more places (#481)

• 2022‑07‑20, Explanation of package submission via non‑default branches (#485), added
@s3alfisc to contributor list.

• 2022‑07‑20, add how to volunteer as a reviewer (#457).

• 2022‑06‑23, Expanded explanation of Codecov, added @ewallace to contributor list (#484)

19.2 0.8.0

• 2022‑06‑03, Remove former references to now‑archived “rodev” package

• 2022‑05‑30, Advise that reviewers can also directly call @ropensci-review-bot check
package

• 2022‑05‑27, Add Mark Padgham to list of authors

• 2022‑05‑27, Add devguider::prerelease_checklist item to pre‑release template (#463)

• 2022‑05‑13, Align version number in DESCRIPTION file with actual version (#443)

• 2022‑05‑13, Update guidelines for CONTRIBUTING.md (#366, #462)

• 2022‑05‑09, Add section on authorship of included code, thanks to @KlausVigo (#388).

• 2022‑05‑09, Removemention of ‘rev’ role requiring R v3.5

• 2022‑05‑05, Move all scripts from local inst directory to ropensci-org/devguider pkg.

• 2022‑05‑03, Update package archiving guidance to reduce README tominimal form.

• 2022‑04‑29, Advise that authors can directly call @ropensci-review-bot check package.

• 2022‑04‑29, Describe pkgcheck-action in CI section.

• 2022‑04‑29, Update scope in policies section to include statistical software.

• 2022‑04‑29, Add prelease.R script to open pre‑release GitHub issue & ref in appendix.

• 2022‑04‑26, Add GitHub 2FA recommendation to package security.

• 2022‑03‑29, Remove references to Stef Butland, former community manager.

• 2022‑03‑28, Add comments on submission planning about time commitment.

• 2022‑03‑24, Remove approval comment template (coz it’s automatically generated by the bot
now).

• 2022‑03‑21, rephrase CITATION guidance to make it less strict. Also mentions CITATION.cff
and the cffr package.

107

• 2022‑03‑08, add links to blogs related to package development (#389).

• 2022‑02‑17, update redirect instructions (@peterdesmet, #387).

• 2022‑02‑14, link to Michael Lynch’s post Why Good Developers Write Bad Unit Tests.

• 2022‑02‑14,mentionmorepackages for testing like dittodb, vcr, httptest, httptest2, webfakes.

• 2022‑01‑10, make review templates R Markdown files (@Bisaloo, #340).

• 2022‑01‑14, update guidance on CI services (#377)

• 2022‑01‑11, update guidance around branches, with resources suggested by @ha0ye and
@statnmap.

• 2022‑01‑10, divide author’s guide into sub‑sections, and add extra info including pkgcheck.

• 2021‑11‑30, adds links to examples of reviews, especially tough but constructive ones (with
help from @noamross, @mpadge, #363).

• 2021‑11‑19, add recommended spatial packages to scaffolding section (software‑review‑
meta#47)

• 2021‑11‑18, update advice on grouping functions for pkgdown output (#361)

19.3 0.7.0

• 2021‑11‑04, addmentions of stat software review to software review intro and to the first book
page (#342).

• 2021‑11‑04, mention pkgcheck in the author guide (@mpadge, #343).

• 2021‑11‑04, add editors’ responsibilities including Editor etiquette for commenting on pack‑
ages on which you aren’t handling/reviewing (@jhollist, #354).

• 2021‑11‑04, give precise examples of tools for installation instructions (remotes, pak,
R‑universe).

• 2021‑11‑04, addmore bot guidance (less work for editors).

• 2021‑10‑07, add guidance for editorial management (recruiting, inviting, onboarding,
offboarding editors).

• 2021‑09‑14, add a requirement that there is at least one HTML vignette.

• 2021‑09‑03, add some recommendations around git. (@annakrystalli, #341)

• 2021‑07‑14, clarify the categories data extraction andmungingby adding examples. (@noam‑
ross, #337)

108

• 2021‑05‑20, add guidance around setting up your package to foster a community, inspired by
the recent rOpenSci community call. (with help from @Bisaloo, #289, #308)

• 2021‑04‑27, no longer ask reviewers to ask covr as it’ll be done by automatic tools, but ask
them to pay attention to tests skipped.

• 2021‑04‑02, add citation guidance.

• 2021‑04‑02, stop asking reviewers to run goodpractice as this is part of editorial checks.

• 2021‑03‑23, launched a new form for reviewer volunteering.

• 2021‑02‑24, add guidance around the use of @ropensci-review-bot.

19.4 0.6.0

• 2021‑02‑04, add guidance to enforce package versioning and tracking of changes through re‑
view (@annakrystalli, #305)

• 2021‑01‑25, add a translation of the review template in Spanish (@Fvd, @maurolepore, #303)

• 2021‑01‑25, the book has nowbetter citation guidance in case youwant to cite this very guide
(@Bisaloo, #304).

• 2021‑01‑12, add somemore guidance on escaping examples (#290).

• 2021‑01‑12, mention the lifecycle package in the chapter about package evolution (#287).

• 2021‑01‑12, require overlap information is put in documentation (#292).

• 2021‑01‑12, start using the bookdown::bs4_book() template.

• 2021‑01‑12, add a sentence aboutwhether it is acceptable to push a new version of a package
to CRANwithin twoweeks of themost recent version if you have just beenmade aware of, and
fixed, a major bug (@sckott, #283)

• 2021‑01‑12, mention the HTTP testing in R book.

• 2021‑01‑12, mention testthat snapshot tests.

• 2021‑01‑12, remove mentions of Travis CI and link to Jeroen Ooms’ blog post about moving
away from Travis.

• 2021‑01‑12, update the package curation policy: mention a possible exception for legacy
packages that are vital parts of the R and/or rOpenSci package ecosystem which are actively
monitored by staff. (@noamross, #293)

109

19.5 0.5.0

• 2020‑10‑08, add help about link checking (@sckott, #281)

• 2020‑10‑08, update JOSS instructions (@karthik, #276)

• 2020‑10‑05, add links to licence resources (@annakrystalli, #279)

• 2020‑10‑05, update information about the contributing guide (@stefaniebutland, #280)

• 2020‑09‑11, make reviewer approval a separate template (@bisaloo, #264)

• 2020‑09‑22, add package curation policy (@noamross, #263)

• 2020‑09‑11, addmore guidance and requirements for docs at submission (@annakrystalli,
#261)

• 2020‑09‑14, addmore guidance on describing data source in DESCRIPTION (@mpadge, #260)

• 2020‑09‑14, addmore guidance about tests of deprecated functions (@sckott, #213)

• 2020‑09‑11, update the CI guidance (@bisaloo, @mcguinlu, #269)

• 2020‑09‑11, improve the redirect guidance (@jeroen, @mcguinlu, #269)

19.6 0.4.0

• 2020‑04‑02, give less confusing code of conduct guidance: the reviewed packages’ COC is
rOpenSci COC (@Bisaloo, @cboettig, #240)

• 2020‑03‑27, add section on Ethics, Data Privacy and Human Subjects Research to Policies
chapter

• 2020‑03‑12, mention GitHub Actions as a CI provider.

• 2020‑02‑24, add guide for inviting a guest editor.

• 2020‑02‑14, addmentions of the ropensci‑books GitHub organisation and associated subdo‑
main.

• 2020‑02‑10, add field and laboratory reproducibility tools as a category in scope.

• 2020‑02‑10, addmore guidance about secrets andpackagedevelopment in the security chap‑
ter.

• 2020‑02‑06, add guidance about Bioconductor dependencies (#246).

• 2020‑02‑06, add package logo guidance (#217).

• 2020‑02‑06, add one CRAN gotcha: single quoting software names(#245, @aaronwolen)

110

https://github.com/aaronwolen

• 2020‑02‑06, improve guidance regarding the replacement of “older” pkgdown website links
and source (#241, @cboettig)

• 2020‑02‑06, rephrase the EiC role (#244).

• 2020‑02‑06, remove the recommendation toaddrOpenSci footer (https://github.com/ropensci/software‑
review‑meta/issues/79).

• 2020‑02‑06, remove the recommendation to add a review mention to DESCRIPTION but rec‑
ommends mentioning the package version when reviewers are added as “rev” authors.

• 2020‑01‑30, slightly changes the advice on documentation re‑use: add a con; mention
@includeRmd and @example; correct the location of Rmd fragments (#230).

• 2020‑01‑30, addmore guidance for the editor in charge of a dev guide release (#196, #205).

• 2020‑01‑22, add guidance in the editor guide about not transferred repositories.

• 2020‑01‑22, clarify forum guidance (for use cases and in general).

• 2020‑01‑22, mention an approach for pre‑computing vignettes so that the pkgdown website
might get build on rOpenSci docs server.

• 2020‑01‑22, document the use of mathjax with rotemplate (@Bisaloo, #199).

• 2020‑01‑20, add guidance for off‑thread interaction and COIs (@noamross, #197).

• 2020‑01‑20, add advice on specifying dependency minimum versions (@karthik,
@annakrystalli, #185).

• 2020‑01‑09, start using GitHub actions instead of Travis for deployment.

• ‑2019‑12‑11, add note in Documentation sub‑section of Packaging Guide section about refer‑
encing the new R6 support in roxygen2 (ropensci/dev_guide#189)

• 2019‑12‑11, add new CRAN gotcha about having ‘in R’ or ‘with R’ in your package title
(@bisaloo, ropensci/dev_guide#221)

19.7 0.3.0

• 2019‑10‑03, include in the approval template that maintainers should include link to the
docs.ropensci.org/pkg site (ropensci/dev_guide#191)

• 2019‑09‑26, add instructions for handling editors to nominate packages for blog posts (ropen‑
sci/dev_guide#180)

• 2019‑09‑26, add chapter on changingpackagemaintainers (ropensci/dev_guide#128) (ropen‑
sci/dev_guide#194)

111

https://github.com/cboettig
https://github.com/Bisaloo
https://github.com/noamross
https://github.com/karthik
https://github.com/annakrystalli
https://github.com/Bisaloo

• 2019‑09‑26, update Slack room to use for editors (ropensci/dev_guide#193)

• 2019‑09‑11, update instructions in README for rendering the book locally (ropen‑
sci/dev_guide#192)

• 2019‑08‑05, update JOSS submission instructions (ropensci/dev_guide#187)

• 2019‑07‑22, break“reproducibility” category inpolicies intocomponentparts. (ropensci/software‑
review‑meta#81)

• 2019‑06‑18, add link to rOpenSci community call “Security for R” to security chapter.

• 2019‑06‑17, fix formatting of Appendices B‑D in the pdf version of the book (bug report by
@IndrajeetPatil, #179)

• 2019‑06‑17, add suggestion to use R Markdown hunks approach when the README and the
vignette share content. (ropensci/dev_guide#161)

• 2019‑06‑17, addmention of central building of documentation websites.

• 2019‑06‑13, add explanations of CRAN checks. (ropensci/dev_guide#177)

• 2019‑06‑13, addmentions of the rodev helper functions where relevant.

• 2019‑06‑13, add recommendation about using cat for str.*() methods. RStudio as‑
sumes that str uses cat, if not when loading an R object the str prints to the console in
RStudio and doesn’t show the correct object structure in the properties. ([@mattfidler]
(https://github.com/mattfidler/) #178)

• 2019‑06‑12, addmore details about git flow.

• 2019‑06‑12, remove recommendation about roxygen2 dev version since the latest stable ver‑
sion has what is needed. (@bisaloo, #165)

• 2019‑06‑11, add mention of usethis functions for adding testing or vignette infrastructure in
the part about dependencies in the package building guide.

• 2019‑06‑10, use the new URL for the dev guide, https://devguide.ropensci.org/

• 2019‑05‑27, addmore info about the importance of the repo being recognized as a R package
by linguist (@bisaloo, #172)

• 2019‑05‑22, update all links eligible toHTTPS andupdate links to the latest versions of Hadley
Wickham and Jenny Bryan’s books (@bisaloo, #167)

• 2019‑05‑15, add book release guidance for editors. (ropensci/dev_guide#152)

112

https://github.com/IndrajeetPatil
https://github.com/bisaloo/
https://github.com/bisaloo/
https://github.com/bisaloo/

19.8 0.2.0

• 2019‑05‑23, add CRAN gotcha: in the Description field of your DESCRIPTION file, enclose URLs
in angle brackets.

• 2019‑05‑13, addmore content to the chapter about contributing.

• 2019‑05‑13, addmore precise instructions about blog posts to approval template for editors.

• 2019‑05‑13, add policies allowing using either <- or = within a package as long as the whole
package is consistent.

• 2019‑05‑13, add request for people to tell us if they use our standards/checklistswhen review‑
ing software elsewhere.

• 2019‑04‑29, add requirement and advice on testing packages using devel and oldrel R ver‑
sions on Travis.

• 2019‑04‑23, add a sentence about why being generous with attributions andmore info about
ctb vs aut.

• 2019‑04‑23, add link to Daniel Nüst’s notes about migration from XML to xml2.

• 2019‑04‑22, add use of rOpenSci forum tomaintenance section.

• 2019‑04‑22, ask reviewer for consent to be added to DESCRIPTION in review template.

• 2019‑04‑22, use a darker blue for links (feedback by @kwstat, #138).

• 2019‑04‑22, add book cover.

• 2019‑04‑08, improve formatting and link text in README (@katrinleinweber, #137)

• 2019‑03‑25, add favicon (@wlandau, #136).

• 2019‑03‑21, improve Travis CI guidance, including link to examples. (@mpadge, #135)

• 2019‑02‑07, simplify codeexamples inPackageEvolutionsection (maintenance_evolution.Rmd
file) (@hadley, #129).

• 2019‑02‑07, added a PDF file to export (request by @IndrajeetPatil, #131).

19.9 0.1.5

• 2019‑02‑01, created a .zenodo.json to explicitly set editors as authors.

113

https://github.com/kwstat
https://github.com/katrinleinweber
https://github.com/wlandau
https://github.com/mpadge
https://github.com/hadley
https://github.com/IndrajeetPatil

19.10 First release 0.1.0

• 2019‑01‑23, add details about requirements for packages running on all major platforms and
added new section to package categories.

• 2019‑01‑22, add details to the guide for authors about the development stage at which to
submit a package.

• 2018‑12‑21, inclusion of an explicit policy for conflict of interest (for reviewers and editors).

• 2018‑12‑18, addedmore guidance for editor on how to look for reviewers.

• 2018‑12‑04, onboarding was renamed Software Peer Review.

19.11 place‑holder 0.0.1

• Added a NEWS.md file to track changes to the book.

114

20 Review template

You can save this as an R Markdown file, or delete the YAML and save it as a Markdown file.

20.1 Package Review

Please check off boxes as applicable, and elaborate in comments below. Your review is not limited to
these topics, as described in the reviewer guide

• Briefly describe any working relationship you have (had) with the package authors.
□ As the reviewer I confirm that there are no conflicts of interest for me to review this work (if

you are unsure whether you are in conflict, please speak to your editor before starting your
review).

20.1.0.1 Documentation

The package includes all the following forms of documentation:

□ A statement of need: clearly stating problems the software is designed to solve and its target
audience in README

□ Installation instructions: for the development version of package and any non‑standard de‑
pendencies in README

□ Vignette(s): demonstrating major functionality that runs successfully locally
□ Function Documentation: for all exported functions
□ Examples: (that run successfully locally) for all exported functions
□ Communityguidelines: including contributionguidelines in theREADMEorCONTRIBUTING,

and DESCRIPTION with URL, BugReports and Maintainer (whichmay be autogenerated via
Authors@R).

20.1.0.2 Functionality

□ Installation: Installation succeeds as documented.
□ Functionality: Any functional claims of the software have been confirmed.
□ Performance: Any performance claims of the software have been confirmed.

115

https://devguide.ropensci.org/policies.html#coi

□ Automated tests: Unit tests cover essential functions of the package and a reasonable range
of inputs and conditions. All tests pass on the local machine.

□ Packaging guidelines: The package conforms to the rOpenSci packaging guidelines.

Estimated hours spent reviewing:

□ Should the author(s) deem it appropriate, I agree to be acknowledged as a package reviewer
(“rev” role) in the package DESCRIPTION file.

20.1.1 Review Comments

116

21 Editor’s template

21.0.1 Editor checks:

□ Documentation: The package has sufficient documentation available online (README, pkg‑
down docs) to allow for an assessment of functionality and scopewithout installing the pack‑
age. In particular,

□ Is the case for the package well made?
□ Is the reference index page clear (grouped by topic if necessary)?
□ Are vignettes readable, sufficiently detailed and not just perfunctory?

□ Fit: The packagemeets criteria for fit and overlap.
□ Installation instructions: Are installation instructions clear enough for human users?
□ Tests: If the package has some interactivity / HTTP / plot production etc. are the tests using

state‑of‑the‑art tooling?
□ Contributing information: Is the documentation for contribution clear enough e.g. tokens

for tests, playgrounds?
□ License: The package has a CRAN or OSI accepted license.
□ Projectmanagement: Are the issue and PR trackers in a good shape, e.g. are there outstand‑

ing bugs, is it clear when feature requests are meant to be tackled?

21.0.1.1 Editor comments

117

https://devguide.ropensci.org/policies.html#package-categories
https://devguide.ropensci.org/policies.html#overlap
https://devguide.ropensci.org/building.html#testing

22 Review request template

Editors maymake use of the e‑mail template below in recruiting reviewers.

Dear [REVIEWER]

Hi, this is [EDITOR]. [FRIENDLYBANTER]. I’mwriting toask if youwouldbewilling to reviewapackage
for rOpenSci. As you probably know, rOpenSci conducts peer review of R packages contributed to
our collection in a manner similar to journals.

The package, [PACKAGE] by [AUTHOR(S)], does [FUNCTION]. You can find it on GitHub here: [REPO
LINK]. We conduct our open review process via GitHub as well, here: [ONBOARDING ISSUE]

If you accept, note that we ask reviewers to complete reviews in three weeks. (We’ve found it takes
a similar amount of time to review a package as an academic paper.)

Our reviewers guide details what we look for in a package review, and includes links to example
reviews. Our standards are detailed in our packaging guide, andwe provide a reviewer template for
you to use. Please make sure you do not have a conflict of interest preventing you from reviewing
this package. If you have questions or feedback, feel free to askmeor post to the rOpenSci forum.

rOpenSci’s community is our best asset. We aim for reviews to be open, non‑adversarial, and fo‑
cused on improving software quality. Be respectful and kind! See our reviewers guide and code of
conduct for more.

[IF MENTORSHIP REQUESTED: You indicated in your form that you’d prefermentorship for your first
review.
You are free to use me as a resource during this process, including asking questions by email and
Slack (youwill receive an invite to the rOpenSci Slack), and sharingdraft reviews for feedbackbefore
posting. I’m also happy to have a brief videocall to walk through the process.
Please let me know in your reply if you would like to schedule one.]

Are you able to review? If you can not, suggestions for alternate reviewers are always helpful. If I
don’t hear from you within a week, I will assume you are unable to review at this time.

Thank you for your time.

Sincerely,

[EDITOR]

118

https://devguide.ropensci.org/reviewerguide.html
https://devguide.ropensci.org/building.html
https://devguide.ropensci.org/reviewtemplate.html
https://devguide.ropensci.org/policies.html#coi
https://discuss.ropensci.org/
https://ropensci.org/code-of-conduct/
https://ropensci.org/code-of-conduct/

23 Reviewer approval comment template

23.1 Reviewer Response

23.1.0.1 Final approval (post‑review)

□ The author has responded tomy review andmade changes to my satisfaction. I recom‑
mend approving this package.

Estimated hours spent reviewing:

119

24 NEWS template

foobar 0.2.0 (2016-04-01)
=========================

NEW FEATURES

* New function added `do_things()` to do things (#5)

MINOR IMPROVEMENTS

* Improved documentation for `things()` (#4)

BUG FIXES

* Fix parsing bug in `stuff()` (#3)

DEPRECATED AND DEFUNCT

* `hello_world()` now deprecated and will be removed in a
future version, use `hello_mars()`

DOCUMENTATION FIXES

* Clarified the role of `hello_mars()` vs. `goodbye_mars()`

(a special: any heading grouping a large number of changes under one thing)

* blablabla.

foobar 0.1.0 (2016-01-01)
=========================

NEW FEATURES

120

* released to CRAN

121

25 Book release guidance

Editors preparing for a release can run the prelease.R script in the inst directory of this repos‑
itory to automatically open a GitHub issue with checkpoints for all current issues assigned to the
upcoming release milestone, along with the following checklist. Before running the script, please
manually check the assignment of issues to the milestone. This should be run one month prior to
planned release.

25.1 Release book version

25.1.1 Repomaintenance between releases

□ Look at the issue tracker for the dev guide and for software reviewmeta for changes still to be
made in the dev guide. Assign dev guide issues to milestones corresponding to versions, ei‑
ther the next one or the one after that, e.g. version 0.3.0. Encourage PRs, have them reviewed.

25.1.2 1month prior to release

□ Remind editors to open issues/PRs for items they want to see in the next version.

□ Run the devguide_prerelease() function from the devguider package.

□ Ask editors for any feedback you need from them before release.

□ For each contribution/changemake sure the NEWS in Appendix.Rmd were updated.

□ Plan a date for release in communication with rOpenSci’s Community Manager who will give
you a date for publishing a blog post / tech note.

122

https://github.com/ropensci/dev_guide/issues
https://github.com/ropensci/software-review-meta/issues
https://github.com/ropensci/dev_guide/milestone/2
https://github.com/ropensci-org/devguider

25.1.3 2 weeks prior to release

□ Draft a blog post / tech note about the releasewith enough advance for editors and thenCom‑
munity Manager to review it (2 weeks). Example, General blog post instructions, specific in‑
structions for release posts.

□ Make a PR from the dev branch to themaster branch, ping editors on GitHub and Slack. Men‑
tion the blog post draft in a comment on this PR.

25.1.4 Release

□ Check URLs using the devguide_urls() function from the {devguider} package

□ Check spelling using the devguide_spelling() function from the {devguider} package. Up‑
date the WORDLIST as necessary.

□ Squash andmerge the PR from dev to master.

□ GitHub release, check Zenodo release.

• [] Re‑build (for Zenodometadata update in the book) or wait for daily build

□ Re‑create the dev branch

□ Finish your blog post / tech note PR. Underline the most important aspects to be highlighted
in tweets as part of the PR discussion.

123

https://github.com/ropensci/roweb3/pull/291
https://blogguide.ropensci.org/
https://github.com/ropensci-org/devguider
https://github.com/ropensci-org/devguider
https://github.com/ropensci/dev_guide/blob/master/inst/WORDLIST

26 How to set a redirect

26.1 Non GitHub pages site (e.g. Netlify)

Replace the content of the current website with a index.html and 404.html files both contain‑
ing:

<html>
<head>
<meta http-equiv="refresh" content="0;URL=https://docs.ropensci.org/<pkgname>/">
</head>
</html>

26.2 GitHub pages

You can setup the redirect from your main user gh‑pages repository:

• createanewrepository (if youdon’thaveoneyet): https://github.com/<username>/<username>.github.io.
• In this repository create a directory <pkgname> containing 2 files: a index.html and
404.html file, which both redirect to the new location (see previous subsection).

• Test that https://<username>.github.io/<pkgname>/index.html now redirects.

124

27 Bot commands

27.1 For everyone

Note thatwe clean issue threads by removing extraneous content, so the record of youhaving asked
for bot‑help will most often quickly be erased or hidden.

27.1.1 See the list of commands available to you

If you need a quick reminder!

@ropensci-review-bot help

27.1.2 See the code of conduct

@ropensci-review-bot code of conduct

27.2 For authors

27.2.1 Check package with pkgcheck

When your package has substantially changed.

@ropensci-review-bot check package

27.2.2 Submit response to reviewers

To record your response to reviewers.

125

@ropensci-review-bot submit response <response-url>

where <response_url> is the link to the response comment in the issue thread.

27.2.3 Finalize repo transfer

After you’ve accepted the invitation to rOpenSci GitHub organization and transferred your GitHub
repository to it, run this command to re‑gain admin access to your repository.

@ropensci-review-bot finalize transfer of <package-name>

27.2.4 Get a new invite after approval

If you missed the one‑week window to accept the invitation to the rOpenSci GitHub organization,
run this to receive a new one.

@ropensci-review-bot invite me to ropensci/<package-name>

27.3 For the editor‑in‑chief

27.3.1 Assign an editor

@ropensci-review-bot assign @username as editor

27.3.2 Put submission on hold

See editorial policy.

@ropensci-review-bot put on hold

126

27.3.3 Indicate the submission is out of scope

Do not forget to first post a comment explaining the decision and thanking the author(s) for their
submission.

@ropensci-review-bot out-of-scope

27.4 For assigned editor

27.4.1 Put submission on hold

See editorial policy.

@ropensci-review-bot put on hold

27.4.2 Check package with pkgcheck

Generally only on pre‑submission inquiries, or when authors otherwise indicate that package has
substantially changed.

@ropensci-review-bot check package

27.4.3 Check statistical standards

Generally only on pre‑submission inquiries, or when authors otherwise indicate that package has
substantially changed.

@ropensci-review-bot check srr

27.4.4 Check that README has software review badge

Towards the end of the submission process.

@ropensci-review-bot check readme

127

27.4.5 Indicate you are now seeking reviewers

@ropensci-review-bot seeking reviewers

27.4.6 Assign a reviewer

@ropensci-review-bot assign @username as reviewer

or

@ropensci-review-bot add @username as reviewer

27.4.7 Remove a reviewer

@ropensci-review-bot remove @username from reviewers

27.4.8 Tweak review due date

@ropensci-review-bot set due date for @username to YYYY-MM-DD

27.4.9 Record that a reviewwas submitted

@ropensci-review-bot submit review <review-url> time <time in hours>

27.4.10 Approve package

@ropensci-review-bot approve <package-name>

128

	rOpenSci Dev Guide
	Preface
	Building Your Package
	Packaging Guide
	Package name and metadata
	Naming your package
	Creating metadata for your package

	Platforms
	Package API
	Function and argument naming
	Console messages
	Interactive/Graphical Interfaces
	Input checking
	Packages wrapping web resources (API clients)

	Code Style
	CITATION file
	README
	Documentation
	General
	roxygen2 use
	URLs in documentation

	Documentation website
	Automatic deployment of the documentation website
	Grouping functions in the reference
	Branding of authors
	Tweaking the navbar
	Mathjax
	Package logo

	Authorship
	Authorship of included code

	Licence
	Testing
	Examples
	Package dependencies
	Recommended scaffolding
	Version Control
	Miscellaneous CRAN gotchas
	CRAN checks

	Bioconductor gotchas
	Further guidance
	Learning about package development

	Continuous Integration Best Practices
	What is continuous integration (CI)?
	Why use continuous integration (CI)?
	Which continuous integration service(s)?
	Travis CI (Linux and Mac OSX)
	AppVeyor CI (Windows)
	Circle CI (Linux and Mac OSX)

	Test coverage
	Even more CI: OpenCPU
	Even more CI: rOpenSci docs

	Package Development Security Best Practices
	Miscellaneous
	GitHub access security
	https
	Secrets in packages
	Secrets in packages and user protection
	Secrets in packages and development
	Secrets and CRAN

	Further reading

	Software Peer Review of Packages
	Software Peer Review, Why? What?
	What is rOpenSci Software Peer Review?
	Why submit your package to rOpenSci?
	Why review packages for rOpenSci?
	Why are reviews open?
	How will users know a package has been reviewed?
	Editors and reviewers
	Associate editors
	Reviewers

	Software Peer Review policies
	Review process
	Publishing in other Venues
	Conflict of interest for reviewers/editors

	Aims and Scope
	Package categories
	Other scope considerations
	Package overlap

	Package ownership and maintenance
	Role of the rOpenSci team
	Maintainer responsiveness
	Quality commitment
	Package removal

	Ethics, Data Privacy and Human Subjects Research
	Resources

	Code of Conduct

	Guide for Authors
	Planning a Submission (or a Pre-Submission Enquiry)
	Preparing for Submission
	The Submission Process
	The Review Process

	Guide for Reviewers
	Volunteering as a reviewer
	Preparing your review
	General guidelines
	Off-thread interactions
	Experience from past reviewers
	Helper package for reviewers
	Feedback on the process

	Submitting the Review
	Review follow-up

	Guide for Editors
	Editors' responsibilities
	Handling Editor's Checklist
	Upon submission:
	Look for and assign two reviewers:
	During review:
	After review:
	Package promotion:

	EiC Responsibilities
	Using devguider::devguide_eic_report()
	Asking for more details
	Inviting a guest editor

	Responding to out-of-scope submissions
	Answering reviewers' questions
	Managing a dev guide release
	Dev guide governance
	Blog post about a release

	Editorial management
	Recruiting new editors
	Inviting a new editor
	Onboarding a new editor
	Offboarding an editor

	Maintaining Packages
	rOpenSci package maintenance cheatsheet
	Help needed?
	GitHub repository access
	Other GitHub topics
	pkgdown documentation
	Access to rOpenSci slack workspace
	Package blog posts
	Package issues promotion
	Package use cases promotion

	Collaboration Guide
	Make your repo contribution and collaboration friendly
	Code of conduct
	Contributing guide
	Issue management
	Communication with users

	Working with collaborators
	Onboarding collaborators
	Working with collaborators (including yourself)
	Be generous with attributions
	Welcoming collaborators to rOpenSci

	Further resources

	Changing package maintainers
	Do you want to give up maintenance of your package?
	Do you want to take over maintenance of a package?
	Taking over maintenance of a package
	FAQ for new maintainers

	Tasks for rOpenSci staff

	Releasing a package
	Versioning
	Releasing
	News file

	Marketing your package
	GitHub Grooming
	Make your repository more discoverable
	GitHub repo topics
	GitHub linguist

	Market your own account

	Package evolution - changing stuff in your package
	Philosophy of changes
	The lifecycle package
	Parameters: changing parameter names
	Functions: changing function names
	Functions: deprecate & defunct
	Testing deprecated functions

	Archiving packages

	Package Curation Policy
	The package registry
	Staff-maintained packages
	Peer-reviewed packages
	Legacy acquired packages
	Incubator packages
	Incubator non-R-packages

	Books

	Contributing Guide

	Appendix
	NEWS
	0.9.0
	0.8.0
	0.7.0
	0.6.0
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.5
	First release 0.1.0
	place-holder 0.0.1

	Review template
	Package Review
	Review Comments

	Editor's template
	Editor checks:

	Review request template
	Reviewer approval comment template
	Reviewer Response

	NEWS template
	Book release guidance
	Release book version
	Repo maintenance between releases
	1 month prior to release
	2 weeks prior to release
	Release

	How to set a redirect
	Non GitHub pages site (e.g. Netlify)
	GitHub pages

	Bot commands
	For everyone
	See the list of commands available to you
	See the code of conduct

	For authors
	Check package with pkgcheck
	Submit response to reviewers
	Finalize repo transfer
	Get a new invite after approval

	For the editor-in-chief
	Assign an editor
	Put submission on hold
	Indicate the submission is out of scope

	For assigned editor
	Put submission on hold
	Check package with pkgcheck
	Check statistical standards
	Check that README has software review badge
	Indicate you are now seeking reviewers
	Assign a reviewer
	Remove a reviewer
	Tweak review due date
	Record that a review was submitted
	Approve package

